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Executive Summary 
 This report presents the initial version of SOCIALENERGY S/W platform’s 
functionalities. It elaborates on the previous deliverables D2.2 and D6.1, which mainly dealt 
with the: a) SOCIALENERGY system’s architecture design and technical specifications, b) 
research problems to be addressed (i.e. scientific algorithms) and intelligence to be 
integrated at the platform’s backend, and c) market analysis about related existing products 
and services in today’s retail electricity markets. 
 
 In chapter 1, an overview of SOCIALENERGY S/W platform’s position in the current 
market, its main functionalities, valuable assets and expected impact is provided. 
 

Chapters 2 and 3 present the most important research results so far regarding the 
intelligence that SOCIALENERGY S/W platform embeds at its backend (i.e. behavioural 
demand response framework, proposed algorithms and performance evaluation results). We 
describe how novel energy programs in the retail electricity sector can help towards 
behavioral change of the end users. We clarify how all this research work is closely/directly 
inter-related with SOCIALENERGY platform’s services. In particular, chapter 2 deals the 
design of novel personalized energy programs that can be used by utility companies/energy 
service providers (ESPs) and generally retailers in the electricity market. A wide family of 
Personalized Real Time Pricing (P-RTP) energy programs is presented together with 
performance evaluation results.  
 
 Chapter 3 follows a similar structure presenting the design of novel Community Real 
Time Pricing (C-RTP) energy programs. Scientific algorithms for creating efficient Virtual 
Energy Communities (VECs) are also studied and respective performance evaluation results 
for several case studies are demonstrated. Finally, the research results are closely inter-
related with the SOCIALENERGY S/W platform’s functionalities (i.e. virtual currency and 
credit distribution policies) and the respective intelligence provided by the proposed 
scientific algorithms. 
 
 In chapters 4 and 5, the SOCIALENERGY’s “real world” functionalities are presented 
via the use of indicative screenshots from the core Green Social Response Network (GSRN) 
platform (cf. chapter 4) and the Research Algorithms’ Toolkit (RAT) subsystem (cf. chapter 5). 
For each S/W module, there is extensive description and explanation of the services that it 
provides to the end users.  
 
 In chapter 6, there is a high-level description of all Application Programming 
Interfaces’ (APIs) structure. More specifically, the following interactions (APIs) and data 
exchanges among the various S/W components are described: a) MDMS-GSRN API, b) GSRN-
RAT API, c) GSRN-GAME API, and d) GSRN-LCMS API.    
 

Finally, chapter 7 concludes the report and summarizes the major action points of the 
consortium for the upcoming months. 
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1 Introduction 
Progressive electric utilities are continuously seeking for new business and 

technology-driven innovations to create new revenue streams and be sustainably 
competitive in the liberalized electricity markets. This digitization era for utilities is tightly 
coupled with the development of inter-disciplinary software (S/W) platforms such as 
SOCIALENERGY aiming at establishing much more efficient communication pathways with 
their clientele and other smart grid market stakeholders. SOCIALENERGY is a user 
engagement, social networking, gamification and business management platform aiming at 
evolving energy markets’ operation and educating virtual energy communities. The 
proposed business model is targeted on electric utilities’ customer segment. The proposed 
system is modular by design incorporating several subsystems from various disciplines, such 
as ICT, energy efficiency, behavioral economics, socio-economic sciences, online social 
networks, education, serious games and gamification. The diversified combined 
functionalities described in this report facilitate the easy, rich and deep communication 
among individual energy consumers, virtual energy communities, utilities, policy makers, 
and other less direct stakeholders (such as electric appliance retailers and building 
renovators). This communication will allow them to: i) discover each other, ii) educate 
themselves so as to understand the difficulties and challenges each of them faces, and iii) 
finally interact and trade with each other.  

 
According to several recent surveys undertaken by independent world-known 

consultancy companies and policy makers the high-level business strategy objectives of a 
progressive utility (or else ESP) are summarized in Table 2 and each one of them is directly 
mapped to one of the five main SOCIALENERGY subsystems.  
 

Table 2: Mapping of ESP’s Business Objectives With SOCIALENERGY Subsystems 

ESP’s Business Objectives Expected outcome 
SOCIALENERGY 
subsystem 

Obj. 1: Build and strengthen a 
strong core of digital trust with 
clientele 

Maximize customer satisfaction, 
minimize churn rate, cope up with 
high competition in the market. 

Core GSRN platform 

Obj. 2: Move from services to 
experiences via a cohesive 
personalization strategy 

Customers are better and more 
efficiently engaged, because they 
deeply comprehend the services that 
are being offered. 

GAME, LCMS 

Obj. 3: Innovative value 
propositions and pricing 
algorithms able to trigger 
investments in energy efficiency. 

Automated algorithms (investment 
planning and pricing) able to 
maximize profits and end users’ 
welfare. 

RAT 

Obj. 4: Exploit the deep insight 
into energy use consumption to 
engage customers on cross-sell 
options that fit their needs 

New revenue streams via 
collaborations with stakeholders 
from sectors other than/not directly 
related with energy. 

Virtual 
Marketplace/ 
EIDaaS 

Obj. 5: Use rapid prototyping 
(i.e. modular and customizable 
S/W platform) 

Cope with various, diverse, volatile 
and dynamically changing needs of 
the liberalized electricity market and 
customer segmentation. 

APIs among all sub-
systems 
(modularity-by-
design) 
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1.1. Overview of SOCIALENERGY’s architecture design and proposed S/W 
platform 

Taking into consideration the above-mentioned objectives of ESP’s business, the 
proposed SOCIALENERGY S/W platform has been designed in such a way that it: 

• Is ‘modular by design’, in order for each ESP/utility to be able to customize its own S/W 
platform based on the business strategy and the type of its customer portfolio’s needs 

(cf. Obj. 5). 

• Can be used by multiple types of users and stakeholders (i.e. end consumers/prosumers, 
VEC leaders, ESP user, ESCO user, etc.) in order to facilitate the easy, rich and deep 
interaction among all involved stakeholders. 

• Allows the user to be seamlessly educated in the virtual world (i.e. game) and then apply 

the lessons learned in the real world (cf. Obj. 2). 

• Educates the user based on a competence-based education framework that 
progressively and sustainably engages the user via the use of Individual Learning Plans 
(ILPs). 

• Allows users to interact with each other, create VECs with a bottom-up manner, 
purchase various community energy programs (EPs) and other innovative products at a 
community level. 

• Supports intelligent functionalities for the automation of the various complex processes 
via the operation of algorithms (e.g. artificial intelligence, dynamic pricing, machine 
learning, big data analytics, context-aware recommendations, etc.). 

• Secures the insight needed to help customers make smart energy use choices and offers 
new products and services that help customers optimize their bills. 

• Combines automation with manual interaction with the user. Therefore, social and 
behaviour analytics considerations will periodically inform social innovation and guide 
technology-oriented activities. 

• Facilitates a virtual/online marketplace, where a diversified set of products and services 
can be purchased by the end user. For example, a residential consumer can use his/her 
SOCIALENERGY credits to purchase a more energy efficient electric appliance or 

upgrade/renovate his/her home (cf. Obj. 4). 

• Is interoperable with a DSO’s distribution management system (DMS) taking into 
consideration the physical underlying network’s needs and constraints. It can also be 
upgraded to a transactive energy (TE) platform for peer-to-peer energy trading in the 
future. 

 
The following figure presents a high-level architecture design of SOCIALENERGY system, 

which comprises of six S/W components (subsystems), namely: 1) Meter Data Management 
System (MDMS), 2) the core GSRN S/W platform or else SOCIALENERGY’s real world, 3) 
Energy Efficiency GAME or else SOCIALENERGY’s virtual world, 4) Research Algorithms’ 
Toolkit (RAT), 5) Learning Content Management System (LCMS), 6) Energy Information 
Distribution as a Service (EIDaaS) or else virtual marketplace. 
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Figure 1: High-level architecture design of SOCIALENERGY system 

 

1.2. Purpose and role of SOCIALENERGY’s real world 

By the term “SOCIALENERGY’s real world”, we mean the web-based S/W platform 
with all the respective services offered to an electric utility company in order for the latter to 
provide advanced and competitive services for its energy consumers in the retail market. On 
the other hand, by the term “SOCIALENERGY’s virtual world”, we mean the Game 
application for energy efficiency, in which the users can enhance the Quality of Experience 
(QoE) being simultaneously educated in good practices regarding energy efficiency with the 
aid of LCMS. 
 

In MDMS, all energy consumption related data is collected. MDMS actually serves as 
SOCIALENERGY’s database, where all energy-related data models are also available (e.g. 
electric appliance consumption models). The datasets that will be used for SOCIALENERGY 
purposes come from real energy consumers of various types (e.g. residential vs. commercial, 
high vs. low educational level, different locations/countries, etc.). This energy consumption 
data is made available in various time granularities (i.e. monthly, daily, hourly, 15-min). 
 

The GSRN is the core S/W platform of the SOCIALENERGY system, in which all types 
of SOCIALENERGY users (e.g. individual consumers, VEC leaders/managers, electric 
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utility/retailer user, ESCO user, etc.) are able to log in and visualize/experience many 
innovative functionalities. GSRN has technical interfaces with all other five (5) subsystems 
integrating several multi-disciplinary functionalities ranging from the scientific/research 
sector (cf. RAT) to the gaming/gamification sector (cf. GAME) and the educational sector (cf. 
LCMS). GSRN is also being fed with real-life energy consumption data from MDMS. It also 
offers Energy Information Distribution as a Service (EIDaaS) services to various targeted 
stakeholders such as building renovation companies and electric appliance vendors/retailers, 
who aim at indirectly exploiting SOCIALENERGY system’s operation towards realizing new 
revenue streams for their businesses, too. 

 
The RAT subsystem is very important for SOCIALENERGY’s operation, because it 

provides all the intelligence that is required towards making SOCIALENERGY S/W platform 
competitive enough and commercially successful in a sustainable manner. It provides “data 
analytics” services mainly to GSRN. Various research algorithms are executed regarding the 
dynamic pricing models that are adopted in the various innovative Energy Programs (EPs) 
and the Virtual Energy Communities’ (VECs) creation and dynamic adaptation algorithms, 
which are required for the online management of the virtual energy communities. RAT also 
provides context-aware recommendations to GSRN and is also a toolkit to be used by the 
system administrator for business/strategy analysis by running various simulations (i.e. ‘what 
if’ scenarios). 
 

LCMS is the subsystem, where the user educates herself both online and offline to 
consolidate the new knowledge about good practices on energy efficiency. LCMS interacts 
with GSRN. Thus, the latter can provide recommendation services to the user according to 
the educational content that is mostly keen on watching next based on her/his current 
educational profile and experiences in both SOCIALENERGY’s real and virtual worlds. The 
role of the LCMS is important because it provides the user the opportunity to better 
comprehend the new concepts in the liberalized smart grid markets and inter-relate the 
“lessons learned” from the GAME with the real-life conditions in order to be able to 
efficiently interact with her/his electric utility/retailer. 

 
Finally, via the EIDaaS S/W component, SOCIALENERGY bridges the gap between 

energy consumers and companies as well as among multiple other stakeholders related to 
the energy efficiency sector. Using the SOCIALENERGY platform, the profile of each energy 
consumer is created (e.g. energy consumption history, social networking activities, 
commercial actions’ history, etc.). This profiling information could be exploited from 
stakeholders in order to: i) design energy efficiency products and services more appealing to 
their audience, ii) allow VECs to participate in the design by giving their opinions, iii) exploit 
VECs as cells within which they will enable group trading, and iv) generally sell Energy 
Information Distribution as a Service (EIDaaS) to whom it may concern in the long-term 
future. SOCIALENERGY has created an API through which it can commercialize this idea of 
“data monetization” service. Moreover, the virtual marketplace module can host products 
and services from electric appliance vendors/retailers, building renovation companies, etc., 
so the user can have an end-to-end experience towards achieving his/her energy efficiency 
targets. 
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1.3. Summary of SOCIALENERGY’s business model and value propositions  

Figure 2 summarizes the business modelling work for SOCIALENERGY S/W platform as 
a whole. It presents the Business Model Canvas (BMC), which is extensively analysed in D6.2 
(M15). We focus on one customer segment that is progressive electric utilities (or else 
Energy Service Providers - ESPs). We also consider five distinct value propositions (or else 
business cases) for SOCIALENERGY S/W platform’s commercial exploitation, namely: 
 

1) Digital user engagement, marketing and gamification platform 
2) Business analysis and intelligence tool 
3) Administrative tool for Virtual energy communities’ management 
4) Virtual/Online marketplace for energy efficiency products and services  
5) SOCIALENERGY Game application for entertainment, education and social inclusion 

 

 
Figure 2: A high-level business model analysis of SOCIALENERGY (updated BMC version in D6.2) 

 
Extensive analysis and technical details about the above-mentioned BMC and Value 

Proposition Canvases (VPCs) can be found in SOCIALENERGY deliverable D6.2 (March 2018). 
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2 Novel personalized energy programs’ 
design and dynamic pricing algorithms 

To design a new Energy Program (EP) that incentivizes behavioral change towards the 
desired energy efficiency targets, a dynamic pricing model and algorithm are required. Let us 
consider a system, which consists of an electric utility company (or else Energy Service 
Provider - ESP) and its N clients/energy consumers. Without harm of generality, in the retail 
market, the utility provides electricity to its clients in order to cover their demand. Thus, 
utility participates in wholesale electricity markets and purchases the required amount of 
energy at a certain cost, which is time-variant and also a non-linear function of the 
aggregated consumption of all N end users (i.e., each incremental energy unit purchased 
costs more). Generally, the utility can minimize the cost of the energy that it purchases in 
the wholesale electricity market (i.e., the system cost) by giving incentives to its end users to 
“harmonize” the aggregated Energy Consumption Curve - ECC (i.e. the demand curve of its 
entire customer portfolio) with the wholesale market prices. Utilities and end users (energy 
consumers) can mutually benefit from this system’s cost reduction and the stability 
improvement that behavioral changes in the energy consumption can bring (see figure 
below). Modern pricing schemes (or else EPs) should be able to trigger these behavioral 
changes (e.g., by motivating users to consume less during peak hours and more during non-
peak hours). For example, in Real Time Pricing (RTP), prices are analogous to the dynamic 
ratio between the total energy production cost (i.e. supply) and the total amount of 
consumption (i.e. demand) [1] [2]. A pricing scheme has to achieve an attractive trade-off 
among the following requirements (or else Key Performance Indicators - KPIs): i) the end 
user’s satisfaction, ii) the stability of the energy production/ transmission/consumption 
system, iii) the utility’s financial profitability, and iv) fairness in allocating the incurred 
flexibility benefits to all users. The first requirement is also referred to as ‘user’s welfare’ and 
is formulated as the difference between a utility function that expresses how much an end 
user values a specific consumption pattern and the cost of energy that s/he consumes. In the 
context of comparing different pricing schemes, the user’s welfare expresses which pricing 
scheme leads to more competitive services in the open electricity market [3] [4]. The second 
requirement is also denoted as ‘behavioral efficiency’ and expresses the capability of a 
pricing scheme to achieve the objectives that motivated it in the first place (e.g. load 
curtailments and shifts). Intuitively, behavioral efficiency of a pricing scheme expresses how 
friendly it is to a TSO/DSO (addressing issues related to energy network stability, efficiency 
and costs) and implicitly affects several financial metrics (e.g. investments in RES, energy 
storage and network upgrades). Usually, it is linked with minimizing the system’s energy 
cost, as in [5] [6]. The third requirement is also referred to as ‘profit dynamics’ and 
represents the profit percentage per energy unit and the total revenues of the utility 
company. In other words, it expresses the financial growth potential of the company that 
exploits a specific pricing scheme (or else EP) [1] [7]. Finally, the fourth requirement is 
fairness KPI and it refers to how fairly the system’s energy savings resulting from the 
behavioral changes of the participating users are allocated among them. Authors in [8] 
propose a pricing model based on the principle that the users’ bills should be analogous with 
their contribution to the system’s energy cost reduction.  
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A wide range of innovative EPs are integrated in SOCIALENERGY platform and more 
specifically in the RAT subsystem. In particular, SOCIALENERGY conducts research on the 
improvement of the behavioral efficiency of the EPs without sacrificing the rest of the 
aforementioned KPIs. For example, as shown in Figure 3, a behavioral change in the 
aggregated Energy Consumption Curve (ECC) can provide reduced energy cost for the system 
without sacrificing users’ welfare due to the fact that some of them are flexible enough to 
undertake the changes in their individual ECCs and in return get reimbursed by the utility 
company. Through SOCIALENERGY platform, the administrative user can perform exhaustive 
system-level simulations before deciding to release a new EP in the retail market (see more 
details in chapter 5 regarding RAT subsystem operation). Similarly, an end user can also 
exploit SOCIALENERGY platform to dynamically invest (if it is beneficial for her/him) on a 
new EP that fits his/her updated needs. Finally, an end user can also play the SOCIALENERGY 
GAME in order to comprehend the optimal behavior that one should have towards 
harvesting the maximum benefits from a certain EP. 
 

 
Figure 3: Advanced Energy Programs design for behavioural change 

 
Complementarily to the above-mentioned business model of an electric utility 

company/ESP, another similar business model is illustrated in the figure below. Figure 4 
explains the role and use of the proposed SOCIALENERGY’s EPs for facilitating the trading of 
Demand Side Management (DSM) units (i.e. as commodity units) in emerging flexibility 
markets. In the assumed business model, as previously mentioned, the ESP purchases 
energy from the wholesale electricity market at a time- and volume-variant cost G in order 
to satisfy the demand of its customer portfolio (i.e. energy consumers). On the other hand, 
aggregated users’ flexibility (i.e. behavioral changes) can create a cost reduction ΔG. 
Subsequently, the ESP can trade its ability to control the demand (e.g. reduce energy cost) as 
a commodity in various types of flexibility markets (e.g. congestion, balancing, voltage 
control, frequency control markets, etc.). This amount of ΔG can be fully returned back as a 
reimbursement/discount to the end users or a fraction of ΔG can also be used to increase 
the ESP’s profits. The premise of the proposed Personalized Real Time Pricing (P-RTP) 
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scheme is that it can considerably decrease the energy system’s cost without deteriorating 
the users’ quality of experience (or else the aggregated users’ welfare - AUW). Moreover, P-
RTP fairly allocates the cost reduction benefits among the users that create them, which is 
very important for the commercial success of SOCIALENERGY product and services. 

 

 
Figure 4: ESP’s business model for energy flexibility units trading in flexibility markets 

 
Τhere are two types of buildings/environments that participate in DSM programs: i) 

Fully automated smart houses/buildings/industries, where users automatically/electronically 
control their electric appliances by setting their preferences online and an Energy 
Management System (EMS) controls their operation, ii) Less automated houses, in which 
only the user’s current consumption can be monitored. Therefore, the research community 
has to design pricing schemes for both of the above- mentioned use cases. The first use case 
assumes an a priori known user’s “base” ECC (before the behavioral changes that P-RTP will 
incentivize) and the second one an unknown “base” ECC. By “base”, we mean the 
natural/voluntary (unforced) consumption behavior of a user, in the absence of incentivized 
time varying penalties or rewards. In this report, we focus on a personalized energy billing 
mechanism, referred to as Personalized - Real Time Pricing (P-RTP), which applies to the first 
use case, and motivates energy consumers to efficiently schedule their flexible loads in order 
to adopt a more energy-efficient ECC. In the next version of this report (i.e. D3.2), research 
results and respective comparative study regarding the second use case will also be 
provided. 

 

2.1. Overview of existing pricing schemes in today’s retail electricity markets 
and SOCIALENERGY proposals 

Nowadays, the majority of residential energy consumers in Europe area continue to 
receive their electricity bills (most probably every month or two/three/four months) with a 
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flat price rate. This means that every energy unit (e.g. KWh) costs a fixed price 
independently of the time, the type of user, network state, market state, location, etc. The 
follow-up model of Inclining Block Rates (IBR) charges a higher per unit price of electricity to 
users with high consumption profiles. For example, in Greece, for a 4-month energy 
consumption up to 1600 KWh, the price per KWh is the lowest possible, while each energy 
unit above the pre-mentioned threshold costs considerably higher. This model is an effective 
motivator towards lower consumption, but it does not address the issue of making the end 
user’s profile more convenient with respect to the time of consumption (i.e. load shifts).  

 
As a result, Time-of-Use pricing (ToU) models were introduced, where a generally 

different per-unit price was applied for each hour of the day (e.g. peak load pricing). For 
example, during morning hours (e.g. 07:00-10:00) and late afternoon (e.g. 17:00-20:00), 
when electricity demand is high, the prices are high, too. Therefore, users are motivated to 
shift loads into low pricing hours. However, ToU programs drawback is that it is still static 
and the respective prices are not: i) reflecting the real-time needs of the grid, thus often 
resulting in congestion problems during the low-priced hours, and ii) acting as effective 
motivators towards load shifting. To cope with these shortcomings, a more dynamic version 
of ToU model is Real Time Pricing (RTP) model, in which the prices are fluctuating every hour 
or even every 15 minutes according to the respective time granularity. However, the 
problem with the RTP model is that it is not practically feasible for the end user to 
continuously monitor the dynamic energy prices and perform respective load reduction and 
shift actions within the day.  

 
The most beneficial aspect of RTP model is that it can directly connect the 

generation, transmission and distribution costs to the charging price and harmonize in this 
way production with consumption. Towards the realization of RTP (enabling demand side 
management actions by the end user’s side), the first step is the development of a two-way 
communication system between the utility company/ESP and the end users. Then, through a 
limited number of message exchanges, prices are derived in real time resolving the trade-off 
between pricing requirements, which are:  

• The minimization of electricity cost (electricity cost varies in time according to the 
way that the energy is generated and the aggregated energy consumption or else 
demand). 

• The maximization of user’s comfort because of the fact that load shifts and cuts 
increase user’s discomfort.  

• The fair distribution of the costs to the participating users (each user should be billed 
according to the cost of its consumption and the discomfort that load shift and load 
shedding introduces to her/him)  

• The utility company/ESP should be able to realize some profits from the whole 
procedure in order for innovative services to be commercially sustainable. 

 

In SOCIALENERGY project, we incorporate all the above-mentioned existing pricing schemes 
(or else energy programs) in the Research Algorithms’ Toolkit (RAT), which is currently under 
development. The baseline model for SOCIALENERGY (or else benchmark) is the RTP model 
(DR-enabled), which is analyzed in the following subsection 2.2. SOCIALENERGY’s proposals 
and research results for even better performing pricing schemes (EPs) are: i) Personalized RTP 
programs, which are analyzed in subsection 2.3, and ii) Community RTP (C-RTP) programs, 
which are analyzed in section 3.  
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2.2. Real Time Pricing (RTP) with demand response 

In this subsection, we describe a basic model for the proposed SOCIALENERGY 
system, which incorporates the state-of-the-art RTP scheme, in order to have a competitive 
benchmark for the demonstration of the outperformance of the novel SOCIALENEGRY EPs 
(i.e. P-RTP and C-RTP energy programs). 
 

2.2.1. Demand Side Management (DSM) model 

We consider a smart community, which consists of electricity users and a utility 
company/ESP. An electricity consumer can be a single smart home or a group of smart 
homes acting as a single unit. Each user 𝑖∈𝑵 is equipped with advanced smart meters that 
monitor her appliances’ Energy Consumption Curves (ECCs) and an Energy Management 
System (EMS) that schedules her energy consumption over the scheduling horizon according 
to the preferences that are set by the electricity consumers. We do not consider price-taking 
consumers as in [9], but, on the contrary, users interact with the ESP in order to reach an 
agreement on the energy consumption schedules and the energy prices. A communication 
network lies on top of the electric grid, enabling the message exchange between the users 
and a Price Controller (PC) installed at ESP’s premise. The PC receives each user’s i aggregate 
consumption and sends back to the users’ EMSs their energy bills. As we later analyze, our 
proposed architecture includes limited information disclosure from the energy consumers 
and thus preserves their privacy by following the same data exchange model as in [10]. Next, 
we present the user model and the energy generation cost model that is widely adopted in 
the literature in order to facilitate the evaluation of the proposed P-RTP billing scheme and 
the comparison between P-RTP and RTP. Note that P-RTP is also applicable to other user and 
energy generation cost models. Finally, without harm of generality, we consider a discrete-
time model with a finite horizon that models the scheduling period H. Each period is divided 
into T timeslots of equal duration. 
 

Each user 𝑖 ∈ 𝑁 owns a set 𝐷𝑖  of household devices, and each device 𝑑 ∈ 𝐷𝑖  
consumes energy 𝑥𝑖,𝑑

𝑡  at time 𝑡 ∈ 𝐻. The total amount of energy that all devices in Di of user 

i consume at time t is denoted as 𝑥𝑖
𝑡. According to the literature [2] [9] [11], user’s devices 

can be categorized into three categories with respect to their load flexibility: curtailable, 
shiftable and non-adjustable. 
 

2.2.1.1. Modeling the curtailable loads 

This category of loads includes appliances such as: heating, ventilation, and air 
conditioning (HVAC) system, building lights with adjustable volume, etc. We denote by 
𝐷𝑐,𝑖 ⊆ 𝐷𝑖 the set of curtailable appliances of user i. For each device 𝑑 ∈ 𝐷𝑐,𝑖, each user 𝑖 ∈
𝑁, according to her preferences, a priori declares a desired consumption schedule 𝑥𝑖,�̃� =

{𝑥𝑖,𝑑
�̃� , 𝑡 ∈ 𝐻, 𝑑 ∈ 𝐷𝑐,𝑖} and a minimum consumption level 𝑥𝑖,𝑑

𝑡  , 𝑡 ∈ 𝐻, 𝑑 ∈ 𝐷𝑐,𝑖 (see Eq. 1). 

User’s satisfaction in every time slot t depends on the amount of energy that a curtailable 
device actually consumes, denoted as 𝑥𝑖,𝑑

𝑡  and on how close it is to the desired consumption 

𝑥𝑖,𝑑
�̃� . Therefore, user i attains a utility 𝑈𝑖,𝑑

𝑡 (𝑥𝑖,𝑑
𝑡 ) in time interval t when her device d 

consumes 𝑥𝑖,𝑑
𝑡 , which varies according to her lifestyle and preferences.  

𝑥𝑖,𝑑
𝑡 ≤ 𝑥𝑖,𝑑

𝑡 ≤ 𝑥𝑖,𝑑
�̃�      (1) 
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In order to have a benchmark for the evaluation of P-RTP, we use the concept of 

utility function, drawn from the fields of Microeconomics [12], to model the end users’ 
preferences regarding the operation of a device. In the case of curtailable devices, it is 
reasonable to assume that the users’ utility function is increasing (i.e. the more a user 
consumes, the more utility she perceives) and concave (i.e. the more a user consumes, the 
less the incremental added utility is). This approach is also in line with the vast majority of 
the literature (e.g. [1] [13] [14]), where a quadratic form is usually considered for the utility 
function, expressed as: 

𝑈𝑖
𝑡(𝑥𝑖

𝑡, 𝜔𝑖
𝑡) =  {

𝜔𝑖,𝑑
𝑡 · 𝑥𝑖

𝑡 −
𝑎

2
· (𝑥𝑖

𝑡)2,   𝑖𝑓  0 < 𝑥𝑖
𝑡 <

𝜔𝑖,𝑑
𝑡

𝑎

(𝜔𝑖,𝑑
𝑡 )

2

2·𝑎
                     ,   𝑖𝑓  𝑥𝑖

𝑡 >
𝜔𝑖,𝑑

𝑡

𝑎

  (2) 

 
In Eq. (2), a and 𝜔𝑖

𝑡 are predetermined parameters, and 𝜔𝑖
𝑡 denotes the 

responsiveness of user i to financial incentives (i.e. flexibility) at time interval t in terms of 
reduction of her energy consumption, while parameter 𝑎 expresses how the rate of change 
of user’s utility is changing as consumption changes. Another utility function that is used by 

the literature [15] makes use of 𝑥𝑖
�̃�: 

 

𝑈𝑖
𝑡(𝑥𝑖

𝑡) = {
−(𝑥𝑖

𝑡 − 𝑥𝑖
�̃�)

2
,    𝑖𝑓 0 ≤ 𝑥𝑖

𝑡 ≤ 𝑥𝑖
�̃�

0,                 𝑖𝑓 𝑥𝑖
𝑡 > 𝑥𝑖

�̃�
    (3) 

 
In order to combine the advantages of the two aforementioned functions, we use a 

utility function, which is mathematically expressed as: 
 

𝑈𝑖,𝑑
𝑡 (𝑥𝑖,𝑑

𝑡 ) = {
𝑈max,𝑖,𝑑

𝑡 − 𝜔𝑖,𝑑
𝑡 · (𝑥𝑖,𝑑

𝑡 − 𝑥𝑖,𝑑
�̃� )

2
,    𝑖𝑓 0 ≤ 𝑥𝑖,𝑑

𝑡 ≤ 𝑥𝑖,𝑑
�̃�

𝑈max,𝑖,𝑑
𝑡     ,             𝑖𝑓 𝑥𝑖,𝑑

𝑡 > 𝑥𝑖,𝑑
�̃�

   (4) 

 
𝑈max,𝑖,𝑑

𝑡  is the maximum user satisfaction concerning appliance 𝑑, the one achieved when 

she consumes her desired load. The proposed utility function of Eq. (4) is a composition of 
the two aforementioned functions and is able to: i) model the heterogeneity in the flexibility 
among participating users that Eq. (2) is also able to model through (𝜔𝑖,𝑑

𝑡 ), and ii) explicitly 

correlate the maximum user’s satisfaction with her desired consumption 𝑥𝑖,𝑑
�̃�  as the utility 

function of Eq. (3) is also able to do. In Eq. (4), 𝜔𝑖,𝑑
𝑡  is again a predetermined parameter that 

captures the flexibility of user i concerning appliance 𝑑 in time slot t. More specifically, the 
lower the value of parameter 𝜔𝑖,𝑑

𝑡 , the more tolerant will be the user towards a certain 

change in her desired energy schedule of device d. Figure 5 depicts user’s i utility at time slot 
t as a function of 𝑥𝑖,𝑑

𝑡  for a given 𝑈max,𝑖,𝑑
𝑡  and different values of 𝜔𝑖,𝑑

𝑡 .  
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Figure 5: User’s i utility in timeslot t as a function of her/his energy consumption for various 

flexibility levels 

 

2.2.1.2. Modeling the shiftable loads 

This category of loads includes appliances that can shift their consumption according 
to user’s preferences. Appliances such as: Electric Vehicles (EVs), the dishwasher, the 
washing machine and the clothes’ dryer can be considered available for consumption shift. 
We denote by 𝐷𝑠,𝑖 the set of shiftable appliances of user i. For this type of appliances, the 

energy consumer sets a desired operating schedule 𝑥𝑖,𝑑
�̃� , 𝑡 ∈ 𝐻�̃�, where 𝐻�̃� =  [𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
�̃� ] is a 

time interval where  𝑡𝑖,𝑑
�̃�  is the timeslot at which it is desirable for the device to start and 𝑡𝑖,𝑑

�̃� , 

is the timeslot at which d normally finishes its task if it starts operation at 𝑡𝑖,𝑑
�̃� . Additionally, 

user i sets a deadline 𝑡𝑖,𝑑
𝑙 , which is the latest time by which the task of device d should be 

completed. Thus, regardless of the shifts that will take place, the total energy consumption 

of device 𝑑 ∈ 𝐷𝑠,𝑖  of user 𝑖 ∈ 𝑁 must reach a certain energy threshold 𝐸𝑖,𝑑 by 𝑡𝑖,𝑑
𝑙 , that is, 

 

0 ≤ 𝑥𝑖,𝑑
𝑡 ≤ 𝐸𝑖,𝑑 ,    ∀𝑡 ∈ [𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
𝑙 ]     (5) 

∑ 𝑥𝑖,𝑑
𝑡𝑡𝑖,𝑑

𝑙

𝑡= 𝑡𝑖,𝑑
�̃� =  𝐸𝑖,𝑑, ∀𝑖 ∈ 𝑁, 𝑑 ∈ 𝐷𝑠,𝑖    (6) 

 
Therefore, regarding user’s i shiftable loads, we can define a feasible scheduling set 

𝑋𝑖 that is, 

𝑋𝑖 = {𝑥𝑖| ∑ 𝑥𝑖,𝑑
𝑡

𝑡𝑖,𝑑
𝑙

𝑡= 𝑡𝑖,𝑑
�̃�

=  𝐸𝑖,𝑑,    ∀𝑑 ∈ 𝐷𝑠,𝑖,  

               0 ≤ 𝑥𝑖,𝑑
𝑡 ≤ 𝐸𝑖,𝑑 ,             ∀𝑡 ∈ [𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
𝑙 ], 

𝑥𝑖,𝑑
𝑡  = 0,      ∀𝑡 ∈ 𝐻\[𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
𝑙 ] }    (7) 
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We assume that each user is fully satisfied when the operation of her device 𝑑 ∈ 𝐷𝑠,𝑖 

does not deviate from her desired energy schedule 𝑥𝑖,�̃� = {𝑥𝑖,𝑑
�̃� , 𝑡 ∈ 𝐻�̃�}, where 𝐻�̃�=[𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
�̃� ]

⊆𝐻𝑠 and 𝐻𝑠 = [𝑡𝑖,𝑑
�̃� , 𝑡𝑖,𝑑

𝑙 ] ⊆ 𝐻. The degree (monetary value) of each user’s i dissatisfaction 

for every unit of energy that a shiftable device 𝑑 consumes in any other time slot (𝑡 ∈ 𝐻𝑠\

𝐻�̃�) depends on user’s individual lifestyle and preferences. In the international literature, this 
particular behavior of users is modeled by a disutility function [2] [3] [16] [17] [18] [19]. We 
assume that user’s dissatisfaction increases as her shiftable devices consume more energy at 
later hours in 𝐻𝑠, which intuitively means that her waiting time increases. Thus, we exploit 
the utility function used in [16], where user’s i dissatisfaction for her/his device is given by: 

𝐷𝑈𝑖,𝑑 = ∑
(𝛿𝑖,𝑑)

𝑡−𝑡𝑖,𝑑
�̃�

· 𝑥𝑖,𝑑
𝑡

𝐸𝑖,𝑑
𝑡∈𝑯𝒔

,        (8) 

 
In Eq. 8, 𝛿𝑖,𝑑 ≥ 1 is an adjustable control parameter. The higher the value of 𝛿𝑖,𝑑 the 

higher will be the dissatisfaction of user i for a given change in her desired energy schedule 
of device d. In other words, the lower the value of parameter 𝛿𝑖,𝑑, the more responsive will 
user i be to price incentives. As we did in the case of curtailable loads, we again note that 
this utility function is used only for evaluation purposes and the proposed P-RTP scheme is 
transparent to any convex utility function that may be used in the real-life business. 
 

2.2.1.3. Modelling the non-adjustable loads 

Each user i a priori declares which of her devices fall into this category. These loads 
have predetermined consumption schedules and are not adjustable by the EMS. We denote 
by 𝑫𝒇,𝒊 the set of the devices that user i categorize as non-adjustable. Examples of this 

category of appliances are: refrigerator, freezer, TV, etc. and their load is not curtailed or 
shifted at all. For non-adjustable loads, we should have: 

 

𝑥𝑖,𝑑
𝑡 = 𝑥𝑖,𝑑

�̃�   , ∀𝑖 ∈ 𝑵, 𝑡 ∈ 𝑯, 𝑑 ∈ 𝑫𝒇,𝒊.   (9) 

 
 

2.2.2. Energy Cost Model 

In the literature [1] [2] [7], in order to evaluate pricing models, an increasing convex 
function G(x) is often adopted to (approximately) model the cost of energy that comes from 
conventional generation. Piece-wise linear functions and quadratic functions are two 
example cost functions. In our study, we use a quadratic energy cost function, the 
mathematical expression of which is given by: 

 

𝐺𝑡 = 𝐺(∑ 𝑥𝑖
𝑡𝑁

𝑖=1 ) = 𝑎 · (∑ 𝑥𝑖
𝑡𝑁

𝑖=1 )2 + 𝑏 · (∑ 𝑥𝑖
𝑡𝑁

𝑖=1 ) + 𝑐,   (10) 
 
where 𝑎 > 0, 𝑏, 𝑐 ≥ 0 are predetermined parameters that depend on the energy 
generators characteristics. This cost function models either the cost of the ESP to purchase 
the necessary energy units from the wholesale electricity market, or the actual cost of the 
utility company/ESP to produce energy by operating its own generation units. 
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2.2.3. Proposed system model 

We consider electricity consumers (users) that participate in a DSM program (which 
is modeled as a game) with the objective to maximize their payoff. User’s i payoff is defined 
as her individual welfare, which equals the total utility attained when her schedulable 
appliances consume a certain amount of energy (as analyzed in the previously) minus her 
energy bill Bi given by Eq. (11). Thus, each user’s EMS calculates her energy consumption 
schedule by solving Eq. (12), and then informs ESP about the updated consumption schedule 
𝑥𝑖. ESP, in turn, sets the energy prices so as to achieve an attractive trade-off among the 
requirements that have been described at the beginning of section 2. Its primary goal is to 
motivate consumers to change their ECCs through a fair billing scheme in order to reduce 
the total energy cost without sacrificing efficiency in terms of social welfare. Social Welfare 
(SW) is defined as the aggregate users’ comfort minus the total energy cost (Eq. 13). Users 
and ESP repeat the aforementioned steps until the process converges to the Nash 
Equilibrium (NE). 

  

𝑊𝑖 =  ∑ ∑ 𝑈𝑖,𝑑
𝑡𝑇

𝑡=1 (𝑥𝑖,𝑑
𝑡 )

𝐷𝑐,𝑖

𝑑=1 − ∑ (𝐷𝑈𝑖,𝑑 (𝑡𝑖,𝑑
�̃� , 𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
𝑙 , 𝑥𝑖,𝑑

𝑡 ))
𝐷𝑠,𝑖

𝑑=1 − 𝐵𝑖  (11) 

𝑥𝑖 = arg max 𝑊𝑖     (12)  

subject to (1), (7), (9) 

SW = ∑ (∑ ∑ 𝑈𝑖,𝑑
𝑡𝑇

𝑡=1 (𝑥𝑖,𝑑
𝑡 )

𝐷𝑐,𝑖

𝑑=1 − ∑ 𝐷𝑈𝑖,𝑑 (𝑡𝑖,𝑑
�̃� , 𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
𝑙 , 𝑥𝑖,𝑑

𝑡 )
𝐷𝑠,𝑖

𝑑=1 )𝑁
𝑖=1  - ∑ 𝐺𝑡𝐻

𝑡=1   (13) 

 
In what follows, we present the RTP scheme (i.e. benchmark) and follow with the description 
of our proposed P-RTP scheme. The RTP scheme will be used in section 2.3 as a benchmark, 
in order to compare it with P-RTP. 
 
 

2.2.4. State-of-the-art Real Time Pricing (RTP) algorithm 

In the initial phase of the RTP algorithm, ESP collects the desired schedule 𝑥�̃� of each 

user i from their EMSs, and calculates their nominal energy bills �̃�𝑖,𝑅𝑇𝑃 , ∀𝑖 ∈ 𝑵. In order to 
do so, ESP exploits Eq. (14) to calculate the price (average cost) per unit of energy at each 
time interval t as: 

𝜌𝑡 =
𝐺(∑ 𝑥𝑖

𝑡𝑁
𝑖=1 )

∑ 𝑥𝑖
𝑡𝑁

𝑖=1

 .     (14) 

 
The ESP, through the communication infrastructure, informs its customers about the 

energy bills, calculated by:  

𝐵𝑖,𝑅𝑇𝑃 =  ∑ 𝜌𝑡 · 𝑥𝑖
𝑡𝑁

𝑡=1      (15) 
 

Eq. (14) corresponds to a non-profit version of RTP [2] [20]. In [2], it is proved that 
social welfare is maximized when 𝜌𝑡 is set to the marginal cost of energy, (i.e. 

𝑑𝐺(∑ 𝑥𝑖
𝑡𝑁

𝑖=1 ) 𝑑(∑ 𝑥𝑖
𝑡𝑁

𝑖=1 )⁄ ). However, in this case, social welfare maximization comes with a 
budget revenue, which violates the budget-balance of the business models described at the 
beginning of this section. Thus, in order to evaluate P-RTP, we exploit a non-profit RTP 
version according to Eq. (14). The algorithm of RTP scheme is summarized in the table 
below. Convergence is proved in Theorem 2 of [21]. 
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Table 3: Algorithm for the calculation of the energy bills and the energy consumption schedules in 
RTP 

1 Initialization:𝑘 = 1, 𝑥𝑖
𝑘 =  𝑥𝑖

�̃�, 𝐵𝑖,𝑅𝑇𝑃
𝑘 = �̃�𝑖,𝑅𝑇𝑃 

2 Repeat 

3       k → k+1 
4       For each user 𝑖 ∈ 𝑵 

5             Receive 𝐵𝑖,𝑅𝑇𝑃
𝑘  from ESP 

6            Repeat            

7                   Update 𝑥𝑖
𝑘   

8                   ESP updates 𝐵𝑖,𝑅𝑇𝑃
𝑘  using (14), (15) 

9                   Calculate 𝑊𝑖
𝑘 using (11) 

10             Until Reach solution of (12) 

11       End for 

12       Calculate 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥|𝑥𝑖
𝑡,𝑘+1 − 𝑥𝑖

𝑡,𝑘|            ∀𝑖 ∈ 𝑵, 𝑡 ∈ 𝑯 

13 Until 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 < 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  

14 End 

 

2.3. Personalized Real Time Pricing (P-RTP) model 

The P-RTP model is a hybrid billing mechanism that is able to take full advantage of 
users’ flexibility. This is achieved through a personalized billing policy, which rewards in a fair 
way the behavioral change (i.e. ECC adjustment) of consumers. In more detail, they receive a 
discount in their energy bill, which is equal or proportional to their contribution in the total 
energy cost reduction. Users that do not change their ECCs do not receive similar treatment 
and may even be penalized in cases of emergencies requiring energy cost reduction (e.g. 
network congestion, lack of energy in islanded mode, etc.). In these cases, as our evaluation 
results show, ESPs using P-RTP are able to participate in various types of flexibility markets 
[22] [23] without sacrificing user’s welfare and fairness. 

 
Identically with RTP, in the initialization phase of P-RTP, users set their desired 

consumption schedules 𝑥�̃� (desired ECC) and, based on them, ESP calculates �̃�𝑖,𝑅𝑇𝑃 , ∀𝑖 ∈ 𝑵,  
using Eqs. (14) - (15), and communicates them to the users. Repeating the assumption that 
users are rational and their objective is to maximize their individual welfare given by Eq. 
(11), each user determines her ECC (energy schedule) by solving Eq. (12). This process is 
repeated (as depicted in Table 3), until its convergence to the final (actual) ECCs and energy 
bills. As it is obvious from the above, the valuation of an ECC for a specific user i (e.g. the 
evaluation of RTP price from Eq. (14) is not a standalone process. The bill of each user i 
depends on the ECCs of the other users in set N, as Eq. (15) depicts for RTP. RTP scheme, as 
well as other DSM algorithms considers that users determine their ECCs sequentially and the 
ESP determines sequentially the valuation of the ECCs, until the convergence of this iterative 
process. In more detail, a user i is implicitly, but adequately informed (through the billing 
system) about the decision (ECCs) of the other users (in every iteration of the 
aforementioned process) and afterwards updates her 𝑥𝑖

𝑡. 
 
In the case of P-RTP, as far as the shiftable loads are concerned, this creates an 

advantage for the users who act first over those who act later. For example, two equally 
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flexible users with similar ECCs would be similarly responsive to a specific financial incentive 
given by the ESP. However, the one that acts first may shift a shiftable load from a peak-hour 
to a low-cost time interval, and this will prevent the second user to do the same, as that 
would lead to a reverse peak. Thus, the first user will get a discounted energy bill, while the 
second user will not. Consequently, the users’ order of action plays a major role in the final 
energy schedules and energy bills. To overcome this problem, we exploit and enhance [21], 
in which users act in parallel and therefore users decide their actions without knowing what 
the others do in each iteration of the aforementioned process. Thus, in every iteration k of 
P-RTP, users calculate their energy schedule by solving Eq. (12) simultaneously. This 
approach, may temporarily create reverse peaks, since every user, in order to achieve a 
larger total cost reduction and receive a larger discount in her energy bill, shifts her shiftable 
loads to low–cost hours. In order to overcome this problem, in each iteration k, we impose a 
restriction in the changes that users are allowed to make in their energy schedules. In more 
detail, the updates are done so that shifts are done in an incremental way, satisfying, 

 

|𝑥𝑖
𝑡,𝑘 − 𝑥𝑖

𝑡,𝑘−1| < 𝜃𝑘 · 𝑥𝑖
𝑡,𝑘−1,    (16) 

 
where 𝜃𝜅 < 1 is a parameter that sets the upper bound of the volume of shift that a user can 
make in a certain step k of P-RTP. If after the users’ decisions, there is a reduction in total 
energy cost (i.e. no peak shifting), 𝜃𝑘+1 will remain the same as in iteration k. Otherwise, P-

RTP will continue in the next step with a smaller 𝜃𝑘+1 =  𝜃𝑘 · 𝜁, where 0 < ζ < 1 in order to 
approach the equilibrium more accurately. The iterations continue until θ gets sufficiently 
small (i.e. users are allowed to change a negligible fraction of their energy schedules). At 

step k of P-RTP, each user i alters her desired/initial energy schedule 𝑥�̃� into 𝑥𝑖
𝑘, according to 

her flexibility and the P-RTP’s billing. This leads to a total energy cost reduction: 
  

𝛥𝐶𝑘 = ∑ (𝐺(∑ 𝑥𝑖
�̃�𝑁

𝑖=1 ) − 𝐺(∑ 𝑥𝑖
𝑡,𝑘𝑁

𝑖=1 ))𝑇
𝑡=1    (17) 

for the ESP. Through P-RTP, ESP rewards each user i for her contribution to total energy cost 
reduction, by an energy bill discount∶ 
 

𝛥𝐵𝑖
𝑘 =  

∑ (𝐺(∑ (𝑥𝑗
𝑡,𝑘−1+𝑥𝑖

�̃�)𝑁
𝑗=1
𝑗≠𝑖

)−𝐺(∑ (𝑥𝑗
𝑡.𝑘−1,+𝑥𝑖

𝑡,𝑘)𝑁
𝑗=1
𝑗≠𝑖

))𝑇
𝑡=1

∑ (∑ (𝐺(∑ (𝑥𝑗
𝑡,𝑘−1+𝑥𝑖

�̃�)𝑁
𝑗=1
𝑗≠𝑖

)−𝐺(∑ (𝑥𝑗
𝑡,𝑘−1+𝑥𝑖

𝑡,𝑘)𝑁
𝑗=1
𝑗≠𝑖

))𝑇
𝑡=1 )𝑁

𝑖=1

· 𝛥𝐶𝑘   (18) 

 
In Eq. (18), the numerator represents the energy cost reduction that user’s i 

behavioral change generated in step k of P-RTP. Note that each user acts knowing only what 
the rest of the users have done in the previous iteration k-1 of P-RTP and having no 
knowledge of their actions in the current iteration. The denominator equals to the 

summation of each user’s analogous contribution and thus we have ∑ 𝛥𝐵𝑖
𝑘𝑁

𝑖=1 = 𝛥𝐶𝑘. 
Therefore, the energy bill discount that each user receives is a fraction of the total energy 
cost reduction, and equal to her contribution. 

In order to combine the volume-aware pricing that RTP proposes and the incentives 
that P-RTP offers, we designed a hybrid billing mechanism which, in every iteration k, 

calculates the 𝐵𝑖,𝐵−𝑅𝑇𝑃
𝑘  of each user i according to: 
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𝐵𝑖,𝐵−𝑅𝑇𝑃
𝑘 =  �̃�𝑖,𝑅𝑇𝑃 − 𝛾 · 𝛥𝐵𝑖

𝑘 − (1 − 𝛾) · (�̃�𝑖,𝑅𝑇𝑃 − 𝐵𝑖,𝑅𝑇𝑃
𝑘 )  (19) 

 

Here, 𝐵𝑖,𝑅𝑇𝑃
𝑘  denotes the energy bill of user i in step k of the algorithm in the case 

that ESP applies the RTP model (according to Table 3). By studying Eq. (19), we observe that 
for γ = 0, P-RTP reduces to the RTP model, while for 𝛾 = 1, the total cost reduction that is 
derived from the behavioral change of a user is converted into an equivalent reduction in 
her energy bill. In case 0 < 𝛾 < 1, a fraction γ of the cost reduction derived from the 
behavioral change of a user is converted into discount in her bill and the remaining fraction 
1-γ is allocated to all participating users according to RTP. In case that 𝛾 > 1, P-RTP actually 
penalizes the set of users who are more reluctant to deviate from their desired energy 
schedule, in order to further favor the flexible users. 

 

By replacing Eqs. (18) and (15) into Eq. (19) for 𝛥𝐵𝑖
𝑘 and 𝐵𝑖,𝑅𝑇𝑃

𝑘  , respectively, one can 

easily prove that ∑ 𝐵𝑖,𝐵−𝑅𝑇𝑃
𝑘𝑁

𝑖=1 = 𝐺(∑ 𝑥𝑖
𝑡,𝑘𝑁

𝑖=1 ), which means that our scheme is budget-

balanced and does not generate surplus or deficit of money. P-RTP is summarized in the 
table below. 

 
Table 4: Algorithm for the calculation of energy bills and the energy consumption schedules in P-

RTP 

1 Initialization: 𝑘 = 0, 𝑥𝑖
𝑘 = 𝑥�̃�, 𝐵𝑖,𝐵−𝑅𝑇𝑃

𝑘 =  𝐵𝑖,𝑅𝑇�̃�, ∀𝑖 ∈ 𝑵, 𝜃 = 𝜃0,𝜃𝑚𝑖𝑛,ε, ζ 

2 While 𝜃𝑘 > 𝜃𝑚𝑖𝑛 do 

3       Calculate 𝐺𝑘 
4       𝑘 → 𝑘 + 1 

5       For each user 𝑖 ∈ 𝑵 

6             Receive 𝐵𝑖
𝑘 

7             Repeat 

8                   Update 𝑥𝑖
𝑘   

9                   Update 𝐵𝑖,𝐵−𝑅𝑇𝑃
𝑘  using (16), (17) and(19) 

10                   Calculate 𝑊𝑖
𝑘using (13) 

11             Until reach solution of (14) 

12       End for 

13       Calculate 𝐺𝑘+1 

14       If 𝐺𝑘+1 > 𝐺𝑘 ∗ (1 − 𝜀) 

15             𝜃𝑘+1 =  𝜃𝑘 ∗ 𝜁 
16       Else 

17             𝜃𝑘+1 =  𝜃𝑘 
18 End 

 

2.4. Performance evaluation results of the P-RTP energy programs 

We evaluate our proposed P-RTP scheme using the state-of-the-art RTP scheme as a 
benchmark. We consider a system consisting of N = 10 energy consumers, each of whom 
operates two curtailable and four shiftable devices. More specifically, each energy consumer 
may conserve energy through the curtailment of the operation of an A/C and a lighting 
system, and additionally shift the operation of an oven, a washing machine, a spin dryer and 
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the charging of an Electric Vehicle (EV). Moreover, every user characterizes some appliances 
as non-adjustable loads. In more detail: 

• Lights: We assume that each household is illuminated by 14 bulbs, which can be 

either LED (8W), CFL (14W) or incandescent bulbs (60W), and that users want the 

lights on from 18:00 until 24:00. Thus, user’s i total desired lighting energy 

consumption is randomly selected over the interval [0.672 – 5.040 kWh]. We assume 

that in every time slot, equal energy amounts are consumed. 

• A/C: Each user operates an A/C system from 14:00 until 22:00. Single A/C units come 

in different sizes and use from 500 to 1500 watts. User’s i total desired A/C energy 

consumption is randomly selected over the interval [4.0-12.0 kWh]. As we did with 

the lights, we assume that equal energy amounts are consumed in every time slot. 

• Oven: We consider that users classify the oven as a shiftable device. Ovens use 1000 

to 5000 watts and are assumed to require at most one hour to complete their task. 

Therefore, user’s i total desired oven’s energy consumption is randomly selected 

over the interval [1.0 – 5.0 kWh]. Users’ desired oven plug-in times vary from 17:00 

to 19:00. 

• Washing Machine: It falls into the category of shiftable appliances. Washing 

machines use 400 to 1300 watts and finish their task in less than an hour. User’s i 

total desired washing machine energy consumption is randomly selected over the 

interval [0.4-1.3 kWh]. Users’ desired plug-in times vary from 09:00 to 12:00. 

• Spin Dryer: Is also accounted as a shiftable device. The energy use of a spin dryer 

varies between 1800 and 5000 watts and it takes less than an hour for them to finish 

their task. User’s i total desired energy consumption is randomly selected over the 

interval [0.4-1.3 kWh]. Users’ desired plug-in times vary from 13:00 to 18:00. 

• EV: The battery capacity is randomly chosen over the interval [5.5-6 kWh] and the 

maximum charging rate is 2 kW. Thus, the minimum time that an EV demands in 

order to be charged is 3 hours. We assume that users desire the charging to start 

somewhere between 00:00 and 05:00 or 18:00 and 21:00, and to be finished ideally 

in 3 hours. 

• Non-adjustable loads: We assume that users categorize as nonadjustable loads 

devices, such as the refrigerator, the TV, the freezer, the Wi-Fi Router, etc., which are 

meant to be ON whenever requested. Thus, users’ aggregate energy consumption of 

critical loads is randomly chosen from [3.6-11.4 kWh] at each timeslot.  

 
The above datasets are derived from [24] [25] [26] and are summarized in Table 5. The 

aggregate desired ECC is presented in the following figure. The scheduling horizon consists 
of T = 24 time slots of hourly duration. For the step size, we set 𝜃0 = 0.95, 𝜁 = 0,50, 𝜀 =
0.001 and 𝜃𝑚𝑖𝑛 = 0.01 throughout the simulations. Regarding the parameters of energy 
cost function in Eq. (10), 𝑏 and 𝑐 are usually set to 0, while the value of parameter 𝑎 varies 
from 10-4 to 0.05 [7] [13] [27]. In this study, parameters 𝑏 and 𝑐 are also set 0, while 𝑎 is 
chosen to be 0.01, 0.02 or 0.03, which is the usual case in the aforementioned works, too. 
Moreover, in [28], parameter δ of Eq. (8) is set to 1 implying perfectly flexible energy 
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consumers. In order to evaluate P-RTP in scenarios of various flexibility classes of end users, 
𝛿 varies from 1 to 1.5. For the same reason, we choose 𝜔 of Eq. (4) to vary from 0.1 to 6. 

 
Figure 6: Aggregate daily users’ Energy Consumption Curve 

 

Table 5: Electricity consumption of a typical household’s appliances 

Appliance Power 
(kW) 

Type of 
device 

𝒕𝒊,𝒅
�̃�  Duration 

(h) 
𝒕𝒊,𝒅

�̃�  Energy 
(kwh) 

- - Non-
adjustable 

00:00 24 24:00 [3.6-
11.4] 

Lighting [0.008-
0.060] 

Curtailable 18:00 6 24:00 [1.2-
5.0] 

A/C [0.5-1.5] Curtailable 14:00 8 22:00 [4.0-
12.0] 

Oven [1.0-5.0] Shiftable [17:00-
19:00] 

1 [17:00-
19:00] 

[1.0-
5.0] 

Washing 
Machine 

[0.4-1.3] Shiftable [10:00-
13:00] 

1 [10:00-
13:00] 

[0.4-
1.3] 

Spin 
Dryer 

[1.8-5.0] Shiftable [14:00-
19:00] 

1 [14:00-
19:00] 

[1.8-
5.0] 

EV [0.0-2.0] Shiftable [00:00-
05:00,18:00-

21:00] 

3 [03:00-
08:00,21:00-

24:00] 

[5.5-
6.0] 

 

In order to demonstrate the performance of the P-RTP model for different classes of 
energy consumers (or else ESP’s customers), we consider three cases: 

a) Low Flexibility: Energy consumers are reluctant to change their energy consumption 

habits. Parameter 𝛿𝑖,𝑑 for each user 𝑖 ∈ 𝑁 and 𝑑 ∈ 𝐷𝑠,𝑖 is randomly selected over 

[1.20-1.50], while parameter 𝜔𝑖 is randomly chosen over [3,6]. Finally, in this use 
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case, we consider users that set relatively strict deadlines, i.e. they allow their EMSs 

to schedule their shiftable loads not more than one to two hours after 𝑡𝑖,𝑑
�̃� . 

b) Medium Flexibility: Energy consumers are more price-sensitive than in the ‘Low 

Flexibility’ use case. Parameter 𝛿𝑖,𝑑 is randomly selected over [1.10-1.20] ∀ 𝑖 ∈ 𝑁, 𝑑 ∈

𝐷𝑠,𝑖. Parameter 𝜔𝑖 is randomly chosen over [1.0,3.0]. Users set their deadlines two to 

four hours after their 𝑡𝑖,𝑑
�̃� .   

c) High Flexibility: In this use case, energy consumers are most willing to participate in 

DSM programs, even for a relatively small repayment. Parameter 𝛿𝑖,𝑑 is randomly 

selected over [1.00-1.10] ∀ 𝑖 ∈ 𝑁, 𝑑 ∈ 𝐷𝑠,𝑖. Parameter 𝜔𝑖 is randomly chosen over 

[0.1,0.5]. Users set their deadlines two to six hours after their 𝑡𝑖,𝑑
�̃� . 

 
Without loss of generality, in all of the above cases, parameter 𝑈𝑚𝑎𝑥 in the utility 

function for curtailable loads is set to 0. Moreover, 𝑥𝑖,𝑑
𝑡  is set to 0 ∀𝑖 ∈ 𝑁, 𝑑 ∈ 𝐷𝑐,𝑖. In order 

to assess the performance of P-RTP algorithm, the following Key Performance Indicators 
(KPIs) are used: 

• Energy Cost (G), as defined in Eq. (10), which is the cost of ESP to acquire the 

electricity needed to fulfill the requirements of its customers. This is an index of how 

energy-efficient a pricing scheme is, that is, how successful it is in incentivizing 

customers to adopt energy-efficient habits. 

• Aggregate Users’ Welfare (AUW) is a KPI that expresses the competitiveness of an 

ESP that adopts a billing strategy in an open electricity market: 

 

𝐴𝑈𝑊 =  ∑ (∑ ∑ 𝑈𝑖,𝑑
𝑡𝑇

𝑡=1 (𝑥𝑖,𝑑
𝑡 )

𝐷𝑐,𝑖

𝑑=1 − ∑ ∑ 𝐷𝑈𝑖,𝑑
𝑡 (𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
�̃� , 𝑡𝑖,𝑑

𝑙 , 𝑥𝑖,𝑑
𝑡 )𝑇

𝑡=1
𝐷𝑠,𝑖

𝑑=1 − 𝐵𝑖,𝑅𝑇𝑃)𝑁
𝑖=1  (20) 

 

• Fairness (𝐹𝑖) is a KPI that indicates the percentage of user’s i contribution to system 

cost reduction that she will be rewarded in terms of energy bill discount: 

𝐹𝑖 =  
𝐷𝑖

𝑅

𝐷𝑖
𝐴 , ∀𝑖 ∈ 𝑁,     (21) 

where 

𝐷𝑖
𝑅 =  

𝐵𝑖,𝑅𝑇𝑃̃ −𝐵𝑖

∑ (𝐵𝑖,𝑅𝑇𝑃̃ −𝐵𝑖)𝑁
𝑖=1

, ∀𝑖 ∈ 𝑁    (22) 

represents the discount that user i receives in his energy bill as a fraction of the total 
discount in all users’ bills, and 

𝐷𝑖
𝐴 =

∑ (𝐺(∑ 𝑥𝑖
𝑡𝑁

𝑗=1
𝑗≠1

+𝑥𝑖
�̃�)−𝐺(∑ 𝑥𝑖

𝑡𝑁
𝑖=1 ))𝑇

𝑡=1

∑ (∑ (𝐺(∑ 𝑥𝑖
𝑡𝑁

𝑗=1
𝑗≠1

+𝑥𝑖
�̃�)−𝐺(∑ 𝑥𝑖

𝑡𝑁
𝑖=1 ))𝑇

𝑡=1 )𝑁
𝑖=1

   (23) 

represents the discount achieved by user i, i.e. her contribution to system cost reduction, as 
a fraction of the summation of all users’ contributions. This is calculated employing the 
concept of Shapley value in cooperative games [29]. In this regard, user’s impact in the 
reduction of system cost is measured through the comparison of the total energy cost in: 1) 
the case in which user i performs the alterations in her ECC, 2) the case in which user i 
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follows her desired ECC. Values of 𝐹𝑖  close to 1 indicate a fairer correlation between the 
behavioral change of user i and the reward that she gets for it. 
 

In SOCIALENERGY context, the adaptability of the Hybrid P-RTP (γ) scheme gives the ESP the 
opportunity to select its own strategy with respect to users’ reward, by adjusting properly the 
value of γ. According to the price elasticity of its customers and the DR services it has to 
provide to the various smart grid market stakeholders, ESP will select a certain value of ‘γ’ in 
order to achieve an attractive trade-off among the above KPIs. Ultimately, this means that 
there is a whole family of P-RTP energy programs that the ESP may select according to its 
business needs, the type of its targeted users, etc., and it does so by just selecting the optimal 
value of parameter ‘γ΄. This automated business analytics service is provided by RAT 
subsystem. 

 

Note: The proposed hybrid P-RTP(γ) scheme is also mentioned as B-RTP (Behavioral RTP) in 

order to outline the whole family of P-RTP energy programs that the ESP may select 

according to the business context. These two terms are used interchangeably throughout 

the text and have the same meaning.  

  

2.4.1. Low Flexibility Case 

In the Low Flexibility case, ESP needs to provide its customers with more generous 
financial incentives in order to motivate them towards more energy-efficient ECCs, as they 
are not so price-sensitive. Figure 7 depicts the ratio between the energy cost G (across the 
whole time horizon) with hybrid P-RTP and the energy cost G with RTP as a function of γ. The 
graphs in the figure below, represent the cases of energy with low generation cots (c = 0.01), 
medium-cost energy (c = 0.02) and high-cost energy (c = 0.03). We notice that even in the 
low flexibility case, B-RTP is able to bring (for γ=2) a cost reduction of 10% in comparison 
with RTP, in case of low- and medium-cost energy (c=0.01, c=0.02) and 13% in case of high-
cost energy (c = 0.03). As cost of energy rises, it is reasonable for G to further decline, since 
the energy bills are higher and thus customers are more willing to exploit their schedulable 
loads.  
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Figure 7: Ratio between G with B-RTP (γ>0) and G with RTP (γ=0) as a function of γ in Low 

Flexibility case 

 
These results are expected for γ = 2, which could correspond to a case, for example, 

of an imminent congestion event in a certain area of the grid. As it is inferred from Eq. (19), 
values of γ greater than 1 imply that ESP over-rewards the more flexible users for their DSM 
actions, while it imposes a monetary penalty to the less flexible ones. 

  
Figure 8 presents the ratio between AUW with B-RTP and AUW with RTP scheme as a 

function of γ. According to it, the aforementioned energy cost reduction does not come with 
any significant users’ welfare decrease even in low flexibility case. In fact, ESP could select γ 
to be up to 1.8 and AUW would not be lower than that under RTP scheme. This is explained 
firstly by the fact that a load shift or a load cut, which are the reasons of the decrease of a 
user’s comfort, are higher compensated by the ESP, when 𝛾 > 1. Moreover, even the more 
flexible users in this inelastic set of energy consumers manage a relatively small cost 
reduction ΔC. Thus, the penalties in the energy bills of the less energy efficient users are too 
small compared to their RTP bills to justify a large decrease in AUW. In other words, given 
that ESP’s customers are a set of inelastic users, increasing γ diminishes AUW by a slow rate. 
Hence, B-RTP (comparing to RTP), manages to reduce energy costs by 9-12%, depending on 
conventional energy generation cost level (c), without sacrificing at all the aggregate users’ 
welfare (AUW). ESP could continue increasing γ in order to further motivate users to shift or 
shed their loads and therefore achieve even higher energy cost reduction. However, this 
would be done at the expense of users’ welfare. Finally, we note in the following figure that 
AUW reaches its peak for γ = 0.8 independently of the value of c. Apparently, in case of high-
cost energy (c = 0.03), the gap between AUW under B-RTP and AUW under RTP is larger, 
since the financial motivation for the users is larger. This incurs more energy efficient actions 
(load shifts and cuts) and hence lower energy bills and finally higher AUW. In other words, 
the bill discounts are greater than their marginal utility, which they may opt to sacrifice in 
order to get the discount. 
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Figure 8: Ratio between AUW with B-RTP (γ>0) and AUW with RTP (γ=0) as a function of γ in Low 

Flexibility case 

 

 
Figure 9: Ratio between users’ welfare for various values of γ and users’ welfare for γ = 0 (RTP) in 

Low Flexibility case 

 
 

Table 6: Average users’ welfare for different values of ‘γ’ in low flexibility case 

γ 0 (RTP) 0.8 1.0 1.5 
𝐀𝐔𝐖(𝐁 − 𝐑𝐓𝐏(𝛄))

𝑨𝑼𝑾(𝑹𝑻𝑷)⁄  1 1.0094 1.0085 1.0039 
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In order to examine the impact of γ on users’ welfare in more detail, we depict in Figure 9 the 
ratio between users’ welfare in case of 𝛾 ∈ [0 , 0.8 , 1, 1.5] and in case of RTP for every user 

𝑖 ∈ 𝑁 and c = 0.02. Ten users are sorted based on their flexibility, with i=1 denoting the most 
flexible user and i=10 the least flexible one1. Studying  

Figure 8, we observe that, as we expected, 𝑊𝑖 of the less price inelastic users i increases with 
γ. On the other hand, RTP is in the best interest of price inelastic users, since not being 
willing to change their energy consumption patterns, it provides them with financial benefits 
that others have created. Like in Figure 8, in Table 6, we establish the preference of users for 
B-RTP(γ=0,8) on average. Also, we note that in B-RTP(γ=1,5), even if price inelastic users are 
penalized in order for the flexible users to receive a generous bonus for their behavioral 
change, users’ welfare is marginally higher on average than in RTP in this low flexibility case. 
 

 
Figure 10: CDF of 𝑭𝒊 among participating users under P-RTP for various values of ‘γ’ in Low 

Flexibility case 
 

Table 7: Mean values of 𝑭𝒊 for different values of ‘γ’ in low flexibility case 

γ 0 (RTP) 0,8 1 1,5 

𝑭𝒊 1.2131 1.0379 1 0.9097  

 
Figure 10 depicts the Cumulative Distribution Function (CDF) of 𝐹𝑖  for different values 

of γ. Cost parameter c is set to 0.02. As analyzed above, 𝐹𝑖  is an index of how fairly the 
energy cost reduction is allocated to users. The fairest way of distributing energy savings 
among the users is represented by 𝐹𝑖 = 1. The figure shows that B-RTP (γ=1) is the fairest 
billing mechanism. This was expected as it incentivizes users towards an energy-efficient 
behavior so that they receive a generous discount in their bills. Under RTP (γ = 0), inflexible 
users benefit from the others’ actions and thus are not motivated to change their energy 
consumption behavior, while demand responsive customers see their actions not being 

                                                      
1 Flexibility is a function of parameters ω and δ, used in Eqs. (4) and (8), respectively, and also 𝑡𝑖,𝑑

�̃� , 𝑡𝑖,𝑑
�̃� , 𝑡𝑖,𝑑

𝑙  (i.e. 

users’ desired ECC). Thus, sorting users based on their flexibility is not a straightforward task and has been done 

approximately. This is why there is not a continuity in the variation of users’ welfare for a certain value of γ. 

This is also observed in corresponding graphs for the other flexibility cases. 
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sufficiently compensated. This discourages users to deviate from their desired ECC.  For 
gradually increasing γ, the distribution of users around 𝐹𝑖 = 1 gets narrower (i.e. fairer 
billing) and for γ=0.8 (which maximizes AUW), it is much closer to 𝐹𝑖 = 1. For values of γ 
greater than 1, the distribution of users around 𝐹𝑖 = 1 starts getting wider again as we can 
see in case of γ = 1.5. Still, the mean value of 𝐹𝑖  (see Table 7) is closer to 1 than RTP, meaning 
that the whole family of P-RTP energy programs (or else B-RTP) is a fairer billing scheme than 
RTP on average. If ESP chooses to impose the fairest possible pricing scheme, B-RTP will 
manage a cost reduction of 6-7.5% comparing to RTP and a slightly higher AUW. 
 

2.4.2. Medium Flexibility Case 

In this medium flexibility case, the concept of Figure 11 Figure 12 Figure 13 Figure 14 is 
similar to that of the respective 4 figures of the previous low flexibility case. In this use case, 
several of the ESP’s clients represent energy consumers with DR capability. They are more 
price-sensitive than in the former case, but still not eager to change their energy behavior 
without a significant financial reimbursement. Thus, in Figure 11, we observe that B-RTP 
achieves a larger energy cost reduction comparing to RTP scheme. Similarly to the low 
flexibility ucase, as γ increases the cost reduction declines in almost linear fashion. However, 
for 𝛾 > 1.3, this happens at the expense of AUW (see Figure 12), which declines as the less 
flexible users are penalized so that the more flexible ones achieve a quite generous bonus. In 
this case, users seem to be less tolerant to the increase of γ above 1. This is because users, 
being more price-elastic comparing to the low flexibility case, create a larger cost reduction, 
which translates into stricter penalties for the less DR-active users. Nevertheless, in case of c 
= 0.02, B-RTP reduces energy cost by up to 16% compared to RTP without sacrificing AUW 
(𝛾 = 1,3). In case of higher or lower cost of energy, this cost reduction is larger (21%) or 
smaller (11%) respectively. Here, we observe a larger gap between the 3 plots of Figure 11, 
when we compare them with those of Figure 7, since users are more price-responsive and 
higher energy costs leads them to even more load shifts and cuts in order for them to 
benefit from B-RTP.   

 
Figure 11: Ratio between G with B-RTP (γ>0) and G with RTP (γ=0) as a function of γ in Medium 

Flexibility case 
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Figure 12: Ratio between AUW with B-RTP (γ>0) and G with RTP (γ=0) as a function of γ in Medium 

Flexibility case 

 
In Figure 13 and Table 8, we can see that, as in the low flexibility case, increasing ‘γ’ 

benefits the more price elastic users, who take advantage of the billing mechanism and 
receive a high discount in their energy bills. On the other hand, the rest of the users 
experience a steeper downfall in their Welfare as γ increases compared to the previous case. 
This can be interpreted, not only by the higher penalties that these users have to pay, but 
also by the fact that they are not totally price inelastic energy consumers as in the low 
flexibility case.   

 
Figure 13: Ratio between users’ welfare for various values of γ and users’ welfare for γ = 0 (RTP) in 

Medium Flexibility case 
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Table 8: Average users’ welfare for different values of ‘γ’ in Medium Flexibility Case 

γ 0 (RTP) 0,6 1,0 1,5 
𝐀𝐔𝐖(𝐁 − 𝐑𝐓𝐏(𝛄))

𝑨𝑼𝑾(𝑹𝑻𝑷)⁄  1 1.0149 1.0117 0.9911 

 
As in the low flexibility case, we observe in Figure 14 and Table 9 that B-RTP (γ=1) is 

the fairest billing mechanism, while RTP is the least fair among B-RTP schemes with 
parameter 0 ≤ 𝛾 ≤ 1. Even B-RTP (γ=1.5) compensates in a fairer way more users than RTP 
does. So, ESP can choose γ=1 to efficiently incentivize its customers to alter their ECCs and 
achieve a cost reduction of 6.5, 12.5 or 17% over RTP, according to the energy generation 
cost parameter c. Alternatively, ESP could choose γ=0.6 to maximize AUW in cases of 
medium-cost and high-cost energy and achieve a 7.5 and 11% respectively larger cost 
reduction than RTP in a fairer manner. In case of low-cost energy (c = 0.01), ESP, in order to 
maximize AUW, should select γ = 0.8, which results in a 5% cost reduction over RTP. 

 
Figure 14: CDF of 𝑭𝒊 among participating users under B-RTP for various values of ‘γ’ in Medium 

Flexibility case 

 
Table 9: Mean values of 𝑭𝒊 for different values of ‘γ’ in medium flexibility case 

γ 0 (RTP) 0,6 1 1,5 

𝑭𝒊 1.1239 1.0341 1 0.9504 

 
 

2.4.3. High Flexibility Case 

In this subsection, we examine the case when ESP’s customers are a set of highly 
price-sensitive users, who are eager to exploit their schedulable loads in order to gain 
discounts in their energy bills. In this high flexibility case, Figure 15, Figure 16, Figure 17, Figure 

18 are again similar with the corresponding four figures for the previous two use cases.  



H2020-731767 SOCIALENERGY Project  SOCIALENERGY D3.1 

D3.1 – Initial version of GSRN platform functionalities Created on 30.03.2018 

 

http://www.socialenergy-project.eu/   38/97 

 
Figure 15: Ratio between G with B-RTP (γ>0) and G with RTP (γ=0) as a function of γ in High 

Flexibility case 

 
Figure 16: Ratio between AUW with B-RTP (γ>0) and AUW with RTP (γ=0) as a function of γ in High 

Flexibility case 

 
Thus, Figure 15 illustrates a downturn in energy cost comparing to RTP scheme. 

However, increasing γ diminishes AUW in much steeper fashion in comparison to the two 
former use cases (see Figure 16). This is because B-RTP (γ>1) penalizes users, who are much 
more willing to provide flexibility services in order for them to get financially rewarded and 
not users who are price-inelastic. This result is very interesting from the ESP’s business 
perspective in case it participates in various types of flexibility markets, where DSM units can 
be sold in really competitive prices (e.g. to solve an imminent congestion problem). In the 
latter case, users would be more tolerant to a fine imposed to their energy bills. This is 
illustrated in Figure 17 and Table 10 (c = 0.02), in which it is clear that the welfare of less 
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flexible users decreases for γ=1.5. Conclusively, B-RTP reduces energy cost by 16 % over RTP 
when c = 0.01, by 24% when c = 0.02 and even by 27% when c = 0.03, while simultaneously 
managing to keep AUW above that of RTP. In case of B-RTP (γ=0,5) which maximizes AUW 
for c = 0.02 or c = 0.03, the energy cost reduction reaches 14% and 17%, respectively. In case 
of low-cost energy (c = 0.01) AUW is maximized for γ = 0.6 and the equivalent cost reduction 
is 10.5% in comparison with RTP. 

 
Figure 17: Ratio between users’ welfare for various values of γ and users’ welfare for γ=0 (RTP) in 

High Flexibility case 

 
 

Table 10: Average users’ welfare for different values of γ in High Flexibility Case 

γ 0 (RTP) 0,5 1,0 1,5 
𝐀𝐔𝐖(𝐁 − 𝐑𝐓𝐏(𝛄))

𝑨𝑼𝑾(𝑹𝑻𝑷)⁄  1 1.0236 1.0052 0.9432 

 
In the CDF of Fi (see Figure 18), we re-establish that B-RTP (γ=1) is the fairest billing 

mechanism, while RTP the least fair one. By gradually increasing γ and as it approaches to 
value 1, the distribution of users gets narrower (fairer pricing), until γ surpasses 1 and the 
users’ distribution starts widening again. We also notice that even B-RTP with γ=1.5 allocates 
the energy cost reduction to the users in a fairer way than RTP (see table below). In more 
detail, B-RTP with γ=1.5 overcharges some users for their energy consumption, although it 
charges users more fairly and thus it is a stronger motivator towards energy-efficient ECCs 
than RTP. This policy would bring a large cost reduction (e.g. 30% for c = 0.02) although it 
would decrease AUW (e.g. 6% for c = 0.02). This policy could be selected in the case of 
emergency situations (e.g. congestion issues in a specific network location, governmental 
policies to cope with energy poverty issues, etc.), when energy cost is requested to severely 
decrease at any cost. 
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Figure 18: CDF of 𝑭𝒊 among participating users under B-RTP for various values of γ In High 

Flexibility case 
 

Table 11: Mean values of 𝑭𝒊 for different values of ‘γ’ in High Flexibility case 

γ 0 (RTP) 0.5 1 1.5 
𝐀𝐔𝐖(𝐁 − 𝐑𝐓𝐏(𝛄))

𝑨𝑼𝑾(𝑹𝑻𝑷)⁄  1.0873 1.0325 1 0.9819 

 

Note: More technical details and performance evaluation results about the family of P-RTP 

energy programs is provided in several journal and international conference publications, 

such as [30] [31] [32] [33] [34]. 

 

2.5. Integration in SOCIALENERGY S/W platform 

In the 3 use cases examined above, we demonstrated that B-RTP offers a much more 
attractive trade-off between widely accepted KPIs than the RTP scheme for all levels of 
energy generation cost and all levels of the end users’ elasticity (i.e. flexibility). Based on 
these results, we consider B-RTP a very useful tool in the hands of an ESP, which can exploit 
it in order to participate in several types of flexibility markets (i.e. balancing, congestion 
management, voltage control, frequency control, N-1 adequacy) with efficient DSM services, 
while being fair towards its customers and without sacrificing the level of eligibility of its 
services in an open and competitive retail market. In emergency circumstances, where the 
stability of the system is at risk and the energy cost is about to increase dramatically (e.g. 
congestion market), an ESP making use of B-RTP, can carry through the task with a relatively 
smooth reduction of users’ welfare.  
 

In SOCIALENERGY context, all the above-mentioned algorithms and performance evaluation 
results regarding the family of P-RTP energy programs have been integrated in the RAT 
subsystem. Therefore, the administrative user (e.g. CEO or business analyst of a utility 
company or ESP) is able to run exhaustive “what-if” scenarios in order to decide the best 
pricing policy according to the types of users, its business plan and the KPI that it wants to 
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optimize. Via the GUI of RAT subsystem (see more details in section 5), the admin user is able 
to easily customize all above-mentioned parameters. The results are also illustrated in the 
core GSRN platform via the deployment of GSRN-RAT API. The individual (energy consumer) 
user of the SOCIAENERGY platform will also be able to run instant simulations in order to 
realize which P-RTP energy program is the most beneficial for him/her. 
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3. Novel community energy programs’ design 
and energy communities’ creation 
algorithms 
In SOCIALENERGY system, we use the term “Virtual Energy Communities” (VECs). VECs 

can be created in a bottom-up (and thus manual) way from the users themselves just like in 
traditional social network platforms. A VEC leader may also be the one that initiates and 
coordinates the process just like in web forums and other web 2.0 tools. However, VECs can 
also be created and dynamically adapted in an automated way via the use of clustering 
algorithms in order for both users and the utility company/ESP to optimally exploit the 
benefits of VEC concept. In particular, a utility’s portfolio can be categorized in several VECs 
based on qualitative characteristics such as demographics, geographical, socio-economic and 
other social norms-based metrics [35] [36] [37]. Given an already existing social graph, the 
goal of a clustering algorithm may also be to find such VECs that the total power 
consumption in each group of users achieves minimum variance [38]. VECs can also be 
created in a way that users’ satisfaction, social network dynamics and the peer pressure that 
VEC members induce to each other are taken into consideration [39]. Other algorithms may 
take into account quantitative metrics for VEC creation problem. For example, the dominant 
VEC creation criterion can be the similarity factor of Energy Consumption Curves (ECCs) 
and/or the Flexibility Curves (FCs) of the users. In other words, users with similar ECCs and 
FCs increase the probability of performing better in a community-based EP. Another 
criterion would be to put together users that have the minimum deviation between their 
forecast and real consumption in order to minimize the imbalance penalties of a utility’s 
portfolio, as we propose in our prior works [40] [41]. Finally, for billing purposes, there are 
also intra-clustering algorithms, which can allocate the costs among the members of a 
certain VEC by applying various policies as shown in the work of some of the authors in [42]. 
 

All the above-mentioned multi-parametric approaches for VECs’ creation can be easily 
customized and integrated in SOCIALENERGY platform. A few clustering examples that we 
currently use in the SOCIALENERGY platform are illustrated in the figure below. What’s more 
interesting is that the administrative user can set specific thresholds based on which an end 
consumer can be recommended to switch to a different VEC that better fits his/her updated 
interests and needs. Users can also play the multi-player mode of the GAME in order to be 
seamlessly educated about the potential benefits and operation of community-based EPs. 
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Figure 19: Multi-parametric VEC creation and dynamic adaptation process in SOCIALENERGY 

 
The proposed business model for the utility company/ESP is similar to the one 

presented in section 2 (see Figure 3 and Figure 4). However, the ESP is now able to offer 
community energy programs and related services to its customers (i.e. end users). Given that 
the end consumers have a certain aggregated Energy Consumption Curve (see ECC1 in the 
figure below), the objective of the ESP is to change the energy consumption behavior of its 
portfolio by ‘flattening’ the aggregated ECC (cf. ECC2), or more generally modifying it so as to 
a be closer to a desired (supply) curve. As a result, the end consumers will also be better 
satisfied as they will experience reductions in their electricity bills without any increase in 
their discomfort levels. It should be noted that it is possible in this paper for the monetary 
gains arising from the reduction of system’s energy cost to be fully returned back to the 
users, or the ESP may take a certain percentage in order to increase its profits. In the 
proposed C-RTP system model that follows, and without lack of generality, we assume the 
former case for the sake of being specific.  
 

In Figure 20, three VEC formation examples are illustrated. In VEC1 case, the 
correlation of flexibility curves is high (i.e. highly flexible users are grouped together, low 
flexibility users also grouped together, etc.) and the correlation of social connections is also 
high (i.e. VEC1 members are friends in social networks and have many common friends, too). 
We will see that VEC1 results in the highest possible decrease of energy cost, the best 
aggregated users’ welfare (AUW) and a fair distribution of incurred gains among the VEC1 
members. In contrast, in the VEC2 case, users are pretty much socially connected, but the 
similarity factor of their flexibility curves is pretty low. We will see that this results in an 
unfair distribution of energy cost and welfare among the users, as the less flexible VEC2 
members will get an equal price for each DR unit offered to the ESP with the more flexible 
users (i.e. flexible users will be frustrated).  
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Figure 20: Business exploitation of VECs and community energy programs 

 

In SOCIALENERGY system, VECs can also be created and dynamically adapted in an 
automated way via the use of clustering algorithms in order for both users and the utility to 
optimally exploit the benefits of VEC concept, such as: 

• Users are recommended to participate in beneficial communities/groups of users 
towards achieving collaborative goals by realizing individual benefits, too. 

• Utilities are able to use automated procedures for business intelligence purposes (e.g. 
dynamically classify users and recommend specific tips, EPs, offers to them). 

• VECs can be dynamically adapted easily in order to achieve new goals that set as a 
community. 

• VECs can employ the C-RTP scheme to realize a local/peer-to-peer electricity market. 

 

3.1. Overview of state-of-the-art and related works on energy communities 

In recent years, many electric utilities, ESPs and regulators around the globe 
increasingly rely on behavior change programs, as essential parts of their DSM portfolios and 
innovative business planning. Based on [43], existing behavior change programs are 
classified in three main categories, depending on whether they are based on: 1) information, 
2) social interactions, or 3) education programs. Information programs include home energy 
reports (HERs), real-time feedback via web platforms and dashboards, energy audit 
programs and personalized or community-level recommendation services. 

 
Social interaction programs include competitive/collaborative gamification solutions 

and games as well as community-based programs via community social marketing. Education 
programs include strategic energy management (SEM), training for community members, K–
12, adult and campus programs. The achievements of these programs are to generate 
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energy savings on their own, increase participation in existing programs and enhance user 
engagement and loyalty (minimize churn rate) in specific web platforms and associated 
products and services. The SOCIALENERGY S/W platform combines characteristics from all 
three above-mentioned categories, promising really innovative services to its end users.  

 
Regarding the related works in energy communities’ creation and management 

towards improving energy efficiency, our recent work in [41] deals with the value of energy 
prosumers’ aggregation, the value of flexibility and the value of ECCs’ correlation to mitigate 
the problems of RES unpredictability and volatility in the near-real-time balancing market 
context. In another recent work [40], we proposed a spectral clustering algorithm to reduce 
the energy system’s cost. We cluster together users that have the minimum deviation 
between their forecast and real prosumption in order to minimize the imbalance penalties of 
an ESP’s portfolio. In the proposed C-RTP model, we extended the algorithm to include 
flexibility and social network metrics and modified the key performance indicator (KPI). 
Moreover, via the introduction of the proposed C-RTP scheme, we can now have more 
quantitative performance evaluation results.  
 

Authors in [44] discuss on the use of Online Social Network (OSN) communities and 
the pre-qualification criteria for a user to be included in a community, but no clustering 
algorithm to automate the process is proposed. [45] defines a set of criteria that can be used 
for the energy community formation problem. It clusters users with similar energy behavior, 
but only considering the range of the actual consumption and not the whole pattern of 
energy consumption. The same hold for [36]; the focus is more on the various goals that a 
goal-oriented community may have and different ways to achieve these goals, but it does 
not deal with the other issues needed (i.e. mathematical model, evaluation, etc.). [46] 
provides a more complete work than [36] regarding the mathematical modeling and criteria 
of clustering. Given a social graph, the clustering algorithm aims at finding groups of users so 
that the total power consumption in each group (who are socially connected) achieves 
minimum variance. The goal is to reduce the peak-to-average-ratio (PAR). However, no 
pricing model is proposed and user utility functions play no role in the problem formulation. 
[47] introduces the VEC concept giving emphasis on the OSN interactions that the users 
should have in order to participate in the same VEC. However, the ECCs and the flexibility 
parameters are not taken into consideration. [48] proposes a clustering algorithm, too, but 
there is no mathematical model supporting the user’s utility function, the energy cost, the 
pricing and the flexibility of each user. [37] considers personality characteristics and social 
networks, which can be embedded in dynamic pricing and DR models. It simulates the user 
satisfaction, the social network dynamics and the peer pressure that members of a group 
induce to each other. Other related works that have coarsely quantified the impact of 
peer/social pressure in behavioral change towards energy efficiency are [49] and [50]. The 
results from these studies are based on theoretical data and methodologies from the social 
sciences sector and were used as input parameter to our proposed system. Finally, [51] deals 
with the market-bidding problem of a cluster of price-responsive consumers of electricity 
that participate in the wholesale electricity market. But, no specific way of clustering is used 
and no VEC concept is utilized (i.e. all users belonging to an ESP’s portfolio are aggregated in 
just one group).   
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3.2. Community Real Time Pricing (C-RTP) with demand response 

Our objective is to design an efficient and automated Demand Side Management 
(DSM) system in the form of an innovative pricing scheme able to exploit online social 
relationships. In this section, the proposed system model is presented in a high-level 
approach. In the next subsections, we elaborate more on the proposed system by providing 
the mathematical modeling and algorithmic operation. 

 

 
Figure 21: Proposed system architecture for VECs’ management 

 

Figure 21 depicts the two main components of the proposed framework, which are C-
RTP and the Energy Community Formation Algorithm (ECFA). The ECFA module takes as 
input offline information (which could be updated periodically), namely: 1) the flexibility 
curves of the participating users, which can be declared or measured from historical data, 2) 
an online social network graph representing the social connections among all possible 
combinations of users (cf. OSN data). The objective of ECFA is the creation of a set of 
communities C= {VEC1, VEC2 , … , …}. ECFA module employs a multi-objective spectral 
clustering algorithm, which is analyzed extensively below. The objectives of the clustering 
algorithm are to minimize the inter-coherency among different clusters (i.e. VECs) and 
simultaneously maximize the intra-coherency of the members of each single VEC. Moreover, 
conventional clustering techniques like the k-means algorithm cannot handle the variation 
and complexity of a VEC’s structure, especially when multiple criteria are considered for its 
creation and dynamic adaptation. From a behavioral efficiency, social dynamics and 
educational point of view, and based on recent findings from real-life surveys and pilots it is 
rational to put together users with similar social connections, because this would intrinsically 
incentivize them to be more engaged in improving their own performance as well as help 
their community to achieve its objectives [52]. By taking into consideration the social 
relationships among all pairs of users (cf. OSN fully-connected graph), we aim at increasing 
the peer pressure among the members of a VEC. When the members of a VEC have strong 
personal relationships and continuously interact with each other by using OSNs we expect a 
more positive “social network synergy” effect [49] [50] [53]. All the above-mentioned 
historical datasets are fed into the ECFA module and the outcome of the algorithm is the 
formation of VECs. It should be noted that the ECFA execution can be done periodically and 
the timeframe depends on the business policy of the ESP’s administrative user. For example, 
in a real-business scenario, the VECs could be adapted on a daily, weekly or even monthly 
basis. VECs formations are then fed into the C-RTP module. The other input parameters of C-
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RTP are: a) energy cost at time k which is a function of the total demand at time interval k, b) 
the desired energy consumption curves (ECCs) of each user, and c) the ESP profits. The 
output of the proposed C-RTP is: a) the final (actual) ECC of each user, and b) the welfare of 
each user. 

 

3.2.1. Proposed system model 

The mathematical modeling and the operation of ECFA and C-RTP are presented. In 
more detail, we initially present: i) a widely accepted user model and a well-known energy 
cost model in order to evaluate the proposed framework, ii) the proposed Community – Real 
Time Pricing (C-RTP) scheme, iii) the criteria for the design of ECFA according to the 
requirements that are derived from C-RTP, and iv) the proposed novel Energy Community 
Formation Algorithm (ECFA). 
 

The end users (energy consumers) participating in the system form set 𝑁 =
 {1,2, … , 𝑁}. Each user 𝑖 disposes a smart meter, which is able to monitor her ECC. We 
consider a finite time horizon of time intervals 𝐻 =  {1, 2, … , 𝐻}. Each time interval k has 
equal but arbitrary length. Each user 𝑖 belongs to exactly one community c and the set of the 
communities are forming the set C. In each time interval 𝑘, user 𝑖 has a desired energy 

consumption 𝑥𝑖
𝑘̅̅ ̅, which is generally different for each user and timeslot. We assume that the 

desired consumption of user 𝑖 at time interval 𝑘 is modified to the actual consumption 𝑥𝑖
𝑘, 

through its participation to an EP (C-RTP with ECFA in this case) We then have for the desired 
and the actual consumption of community c at interval 𝑘 that: 

 

𝑥𝑐
𝑘̅̅ ̅ = ∑ 𝑥𝑖

𝑘̅̅ ̅
𝑖∈𝑐   𝑥𝑐

𝑘 = ∑ 𝑥𝑖
𝑘

𝑖∈𝑐  .                                               (24) 

 

3.2.2. Modelling the users 

The convenience of user 𝑖 at a time interval 𝑘 is expressed through a utility function 

𝑢𝑖
𝑘(𝑥𝑖

𝑘, 𝜔𝑖
𝑘). This is a function of user’s consumption 𝑥𝑖

𝑘  and her flexibility parameter 𝜔𝑖
𝑘. 

Intuitively, the 𝑢𝑖
𝑘(𝑥𝑖

𝑘 , 𝜔𝑖
𝑘). expresses how much user 𝑖 values (in monetary terms) 

consumption 𝑥𝑖
𝑘  at time 𝑘. The utility function that is used here towards the evaluation of C-

RTP is adopted from microeconomics theory and it is a widely accepted method for the 
evaluation of pricing models in smart grids (see related references in subsection 2.2). The 

form of the utility function is the same for each 𝑖, k, but parameter 𝜔𝑖
𝑘 distinguishes 

different user and time preferences. A concave and increasing utility function of 𝑥𝑖
𝑘  and 𝜔𝑖

𝑘 

with a constant maximum value after a saturation point (related to 𝑥𝑖
𝑘̅̅ ̅) is widely adopted:  

𝑢𝑖
𝑘(𝑥𝑖

𝑘 , 𝜔𝑖
𝑘) =  −𝜔𝑖

𝑡 · (𝑥𝑖
𝑡 − 𝑥𝑖

𝑘̅̅ ̅)
2
 .                                                (25) 

For the scope of the current work and without loss of generality, we assume only one 

continuous, dispatchable and positive load for each user 𝑖, representing the sum of the 

dispatchable/curtailable consumptions of all the electric appliances of user 𝑖 at time 𝑘. 

Finally, we note that the aforementioned utility function is used only for evaluation purposes 

(for comparing C-RTP with state-of-the-art RTP), while C-RTP does not make any assumption 

on its form. 
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3.2.3. Modelling the energy cost 

The modelling of energy cost is the same with the one presented in subsection 2.2. 

 

3.3. Community Real Time Pricing (C-RTP) model 

As mentioned earlier, the state-of-the-art RTP model does not incentivize efficiently 
changes (i.e. cuts and shifts) in the ECC of the users. When a user decreases energy 
consumption, s/he does not only cause a reduction in the total cost of energy Gk but she also 
reduces the price of energy as depicted in Eq. (10), due to the convexity of Gk. With RTP, 
these benefits of the actions of a specific user are distributed to all users proportionally to 
their actual consumption. In this way, a user may gain from the behavioral changes of other 
users, even if she did not perform any change in her behavior (ECC modification). In order to 
avoid this phenomenon, our proposed C-RTP/ECFA framework factorizes the desired and the 
actual consumption of the participating users in order to enhance RTP with behavioral 
efficiency. 
 

Moreover, in order to generate a degree of peer pressure to the participating users and 

increase in this way their flexibility (modelled through parameter 𝜔𝑖
𝑘), users are grouped 

into communities. Thus, we are able to charge them in each time instant 𝑘 according to the 

aggregated desired energy consumption 𝑥𝑐
𝑘̅̅ ̅ and the aggregated actual energy consumption 

𝑥𝑐
𝑘  of community 𝑐. According to these, the aggregated bill 𝐵𝑐

𝑘of community c for time 
interval k is given as: 

 

𝐵𝑐
𝑘 = 𝑝𝑘̅̅ ̅𝑥𝑐

𝑘̅̅ ̅ − 𝛾
(𝑥𝑐

𝑘̅̅ ̅̅ −𝑥𝑐
𝑘)

∑ (𝑥𝑐
𝑘̅̅ ̅̅ −𝑥𝑐

𝑘)𝑐∈𝐶

[𝐺(∑ 𝑥𝑐
𝑘̅̅ ̅

𝑐∈𝐶 ) − 𝐺𝑘]  − (1 − 𝛾) [𝑝𝑘̅̅ ̅𝑥𝑐
𝑘̅̅ ̅ −

𝑥𝑐
𝑘

∑ 𝑥𝑐
𝑘

𝑐∈𝐶  
𝐺𝑘] ,    (26) 

where 𝑝𝑘̅̅ ̅ is the price of energy that users would have paid if their consumptions were their 
desired ones (no energy sheds). Parameter γ quantifies the level of incentives that C-RTP 
provides, as described next. 
 

In case γ=0, C-RTP (γ=0) is identical to RTP model, which sees communities as 
“virtual” users. Our performance evaluation results show that in this case, the pricing 
scheme suffers from behavioral efficiency, as it charges communities only according to the 
actual consumption without factorizing at all their behavioral changes: 

 

𝐵𝑐
𝑘(𝛾 = 0) =

𝑥𝑐
𝑘

∑ 𝑥𝑐
𝑘

𝑐∈𝐶
𝐺𝑘                                 (27) 

 

In case γ=1, the C-RTP(γ=0) pricing model becomes behaviorally efficient by 

distributing all the financial benefits 𝐺(∑ 𝑥𝑖
𝑘̅̅ ̅

𝑐∈𝐶 ) − 𝐺(∑ 𝑥𝑐
𝑘

𝑐∈𝐶 ) derived from the energy 

sheds to all the communities in a way proportional with the sheds 𝑥𝑐
𝑘̅̅ ̅ − 𝑥𝑐

𝑘  each of them 
performed, and thus equal to the proportional financial benefits they offered to the system. 
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𝐵𝑐
𝑘(𝛾 = 1) = 𝑝𝑘̅̅ ̅𝑥𝑐

𝑘̅̅ ̅ −
(𝑥𝑐

𝑘̅̅ ̅̅ −𝑥𝑐
𝑘)

∑ (𝑥𝑐
𝑘̅̅ ̅̅ −𝑥𝑐

𝑘)𝑐∈𝐶

[𝐺(∑ 𝑥𝑖
𝑘̅̅ ̅

𝑐∈𝐶 ) − 𝐺(∑ 𝑥𝑐
𝑘

𝑐∈𝐶 )] .                           (28) 

 

When 0<γ<1, the C-RTP(γ) model follows a hybrid strategy between the two 
aforementioned cases. Finally, in case where γ>1, C-RTP constitutes a more aggressive 
policy, in terms of behavioral efficiency, by even penalizing communities that are not 
performing energy sheds, thus incentivizing more communities to participate in demand 
response actions. In the performance evaluation of the proposed framework (see the next 
subsection), we look into the performance of C-RTP for various values of γ and elaborate on 
the capabilities offered by the appropriate choice of this parameter. 

 
The first step of C-RTP operation is the calculation of the community bills 𝐵𝑐

𝑘 for all 

c∈C and the calculation of the 𝑥𝑐
𝑘. Thus, an iterative process between the ESP and each 

community in C takes place. In each step m of this process, the ESP takes the new energy 

consumption of a community 𝑐 at 𝑘, denoted as 𝑥(𝑚)𝑐
𝑘  with 𝑥(0)𝑐

𝑘=𝑥𝑐
𝑘̅̅ ̅, and calculates the 

new bills for all communities in C according to Eq. (28). Then each community, updates its 

consumption 𝑥(𝑚 + 1)𝑐
𝑘 aiming to maximize its welfare. The Community Welfare (CW) of a 

community c at time interval 𝑘 is defined as: 
  

𝐶𝑊𝑐
𝑘 =  ∑ 𝑢𝑖

𝑘(𝑥(𝑚)𝑖
𝑘, 𝜔𝑖

𝑘) −𝑖∈𝐶 𝐵𝑐
𝑘.                                                                     (29) 

 

In Eq. (29), each 𝑥(𝑚)𝑖
𝑘 (which is the energy consumption of user 𝑖 at 𝑘 in the mth 

iteration of C-RTP) is δc(m)𝑥𝑖
𝑘̅̅ ̅ where δc(m)[0,1] is equal for all the participating users in a 

community c. As it is analyzed in the next subsection, in order to preserve the fairness 
properties that this architectural decision introduces, the formation of communities takes 
into account the flexibility parameters of the users, so as to place in each community, users 
with similar flexibility levels. 
 

After a number of interactions of the two aforementioned steps, C-RTP converges and 
its outputs are the bills 𝐵𝑐

𝑘 and actual consumptions 𝑥𝑐
𝑘  for all c∈ 𝐶. In order to achieve this 

in each steps m, it adjusts 𝑥𝑐
𝑘  by solving Eq. (30) to compute 𝛿𝑐(𝑚) value as follows: 

        𝛿𝑐(𝑚) =  arg max𝑐{𝐶𝑊𝑐
𝑘}   .                                               (30) 

 

After the calculation of the final community bills, the next process is the calculation of 
the bill of each participating user. In our model, users participate in the bill of their 

community in a way proportional to their actual consumption 𝑥𝑖
𝑘 . Thus, the bill 𝐵𝑖

𝑘 for  user 𝑖 
in time interval 𝑘 is given by: 

𝐵𝑖
𝑘 =

𝑥𝑖
𝑘

∑ 𝑥𝑖
𝑘

𝜄∈𝐶
𝐵𝑐

𝑘                                (31) 

 

More advanced policies that distribute the bill of each community to its members has 

been already described in our previous work [42] and are outside the scope of this work. C-

RTP is transparent to these policies and can be combined with any of them. 
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3.4. Energy community creation algorithms  

 

3.4.1. Criteria that determine the formation of the Virtual Energy Communities 

Based on the philosophy of the C-RTP scheme, which is to incentivize communities, 
exploit social interactions, but also be fair, we derive two criteria as the most appropriate 
ones to play a role towards the creation of the VECs. The first criterion is the flexibility 
similarity levels (apart from the desired and actual energy consumption) of the participating 

users, which is modeled here through flexibility parameter 𝜔𝑖
𝑘. In view of Eq. (28), users with 

similar flexibilities perform similar energy sheds. Thus, ECFA will have to group users with 
similar flexibilities towards the development of a fair pricing model, especially given that the 
distribution of profits among the members of the community (Eq. (31)) is based on their 
consumption and not on their individual contribution. In addition, as the performance 
evaluation subsection describes, the optimization of the community welfare (Eq. (29)) is 
much more behavioral efficient (maximization of energy sheds and users’ welfare) in this 
case.  

The second criterion that influences the formation of the communities is the social 
correlation of the participating users. The VECs’ formation according to social correlation 
among its members has been found to result into effective behavioral changes. In more 
detail in [49], the results on a social network peer pressure show that the influence is not 
only related to its connectivity, but it is also strongly affected by node-to-node social 
weights. Energy savings reported in [49] start from 5.64% and reach up to 25%. Related 
research findings in [54], found the effect of group-level feedback and peer education on 
energy reductions to be in the range from 4% to 7%. Thus, in the energy efficiency sector, 
there are already some initial attempts to exploit social networks (peer pressure) in order to 
achieve a behavioral change in the energy consumption. On the other hand, there is no 
pricing model yet able to automate and exploit these phenomena. In addition, there are no 
experimental studies and results from other areas/sectors in order to quantify through 
simulations the expected improvements. We should note here that criteria other than 
flexibility and social connections could also be used to form Virtual Energy Communities (and 
define associated Energy Programs), such as geographic location, age group, income level, 
etc. As a result, updated research results will be provided in D3.2 (M24), once real 
behavioural data from the SOCIALENERGY S/W platform is available. 
 
 

3.4.2. Proposed Energy Community Creation Algorithm (ECFA) 

The implementation of ECFA is done through the use of spectral clustering [55], which is one 
of the most widely used algorithms for clustering, thanks to their ease of implementation, 
simplicity, efficiency, and empirical success. According to ECFA, the set N of consumers is 

clustered into a set of communities 𝑪 = {𝒄𝟏, 𝒄𝟐, … , 𝒄|𝑪|}. ECFA takes into account the 

flexibility of each consumer and his/her connections in online social networks (OSNs, such as 
Facebook, Twitter, etc.) and according to their factorization, produces a distance between a 
consumer 𝒊 and a consumer 𝒋 which is:  

 

𝑑(𝑖, 𝑗) = 𝑤1 · (1 − ((𝜔𝑖 − 𝜔𝑗) max(𝜔𝑖, 𝜔𝑗)⁄ )) + (1 − 𝑤1) · 𝑓(𝑖, 𝑗).                   (32) 
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Parameter 𝑤1 ∈ [0,1] can be used to obtain a trade-off between the similarity in 
flexibility and in social connections, as described later, while 𝜔𝑖 and 𝜔𝑗 express user 

flexibilities. User flexibility could be declared by the users and monitored/validated in 
practice, or be measured through historical data (e.g. user’s recent behavior). Parameter 
𝑓(𝑖, 𝑗) ∈ [0,1] represents the level of social connection between 𝑖 and 𝑗 and is defined as: 
 

𝑓(𝑖, 𝑗) = 0.5 · 𝐹𝑟(𝑖, 𝑗) + 0.5 · 𝐶𝑓(𝑖, 𝑗)/𝑇𝑓(𝑖, 𝑗)                                 (33)   

 

In Eq. (33), 𝐹𝑟(𝑖, 𝑗) is 1 if 𝑖 is socially connected with 𝑗 in OSNs, 𝐶𝑓(𝑖, 𝑗) is the number 
of common social connections between 𝑖 and 𝑗 in OSN and 𝑇𝑓(𝑖, 𝑗)  is the sum of the social 
connections of 𝑖 and 𝑗 in OSNs. The definition of Eq. (33) is motivated from observations 
from field trials [49] [50] [56] [57]. Other definitions of 𝑓(𝑖, 𝑗) could have been used in our 
proposed framework, and the specific definition is used only in our performance evaluation 
results. 
 

The objective of ECFA is to group consumers into VECs, in a way that consumers in the 
same VEC are similar to each other, with the index of similarity given by Eq. (32). This distance 
metric among consumers is the input value to similarity matrix, and the spectral clustering 
technique is then used to group consumers in a predefined number of clusters. The table 
below describes the execution steps of ECFA.  

 

Table 12: Energy Communities Formation Algorithm (ECFA) 

Energy Communities Formation Algorithm (ECFA) 

Input: A set of consumers 𝑁 = {1,2, … , 𝑁} 

Output: A partition 𝐶 = {𝑐1, 𝑐2, … , 𝑐|𝐶|} 

Step 1. Compute similarity matrix W such that 𝑊(𝑖, 𝑗) = 𝑑(𝑖, 𝑗), for all i,j∈ 𝑁 

Step 2. Compute diagonal matrix: 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗  for all i∈ 𝑁 

Step 3. Compute Laplacian matrix: L = D – W. 

Step 4. Compute Normalized Laplacian matrix: ℒ = 𝐷−1/2𝐿𝐷1/2 

Step 5. Compute the first k eigenvectors of ℒ, denote as U.  

Step 6.  Consider the rows of U as data points, use k-means to cluster them into  k 
VECs. 

Step 7. Assign user i to VEC 𝑐| , if row i of matrix U was assigned to community 𝑐|.  

 

The optimal value of w1 in Eq. (32) according to which ECFA takes place is dataset 
dependent and it also depends on the impact that social connections have on the 
modification of the flexibility levels of the consumer. One last thing that has to be modelled 
is the effect peer pressure (pp) from socially connected users on a specific user 𝑖. Based on 
relevant field trials [49] [50] [56] [57], we assume that the peer pressure impact is quantified 
as a reduction of the flexibility parameter (increase in flexibility) from the a priori value 𝜔𝑖 to 
an a posteriori (after the peer pressure) value of 𝜔_𝑝𝑝𝑖 given by: 

 

                              𝜔_𝑝𝑝𝑖 = 𝜔𝑖(1 − 𝑚𝑎𝑥_𝑝𝑝 · 𝑓(𝑖, 𝑗))                  (34) 
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Thus, 𝜔_𝑝𝑝𝑖 is the flexibility parameter of consumer 𝑖 after the peer pressure caused 
by community formed by ECFA. Here, 𝑚𝑎𝑥_𝑝𝑝 ∈ [0.1] is the maximum percentage in which 
peer pressure effect is able to modify flexibility of consumers. 
 

3.5. Performance evaluation results of the C-RTP energy programs 

In this subsection, we evaluate the performance of the proposed C-RTP scheme, by 
using the RTP scheme as a benchmark. More details about the operation of RTP are provided 
in section 2.2.4. We consider a system consisting of N = 64 energy consumers and simulate a 
period of one day. Unless otherwise stated, we set c=0.02 in the energy cost generation 
function of Eq. (10), and use ECFA to form |C|=16 VECs. 
 

To evaluate the proposed system, we use the following Key Performance Indicators 
(KPIs), also widely accepted in the literature: 

• Energy Cost G, as defined in Eq. (10), which is the cost of ESP to acquire the electricity 
needed to fulfil the requirements of its customers. This is an index of how energy-
efficient a pricing scheme is in terms of incentivizing its customers to adopt energy-
efficient habits. 

• Aggregate Users’ Welfare (AUW) is a KPI that summarizes UW and expresses the 
competitiveness of an ESP that adopts a billing strategy in an open retail electricity 
market. 

• Behavioral Reciprocity BRi of user 𝑖 is the degree of correlation between the 
behavioral change of 𝑖 and the reward that 𝑖 gets for it: 

𝐵𝑅𝑖 =
𝐷𝑖

𝐴

𝐷𝑖
𝑅 , ∀ 𝑖 ∈ 𝑁                                                             (35) 

where 𝐷𝑖
𝐴 (Eq. (36)) represents the discount achieved, i.e. the system cost reduction, for 

user 𝑖 and 𝐷𝑖
𝑅 (Eq. (37)), represents the discount received by 𝑖, i.e. the difference between 

user 𝑖’s  bill with the original system’s state (𝑥𝑖
𝑡 = 𝑥𝑖

�̃�  ∀𝑖 ∈ 𝑁) and the actual user 𝑖 bill (after 
applying RTP or C-RTP). Values of 𝐵𝑅𝑖 close to 1 indicate a better trade-off between AUW 
and G, and thus a fairer pricing mechanism. 

𝐷𝑖
𝐴 = (𝑥𝑖

�̃� − 𝑥𝑖
𝑘) ∙  

[𝐺(∑ 𝑥𝑖
�̃�𝑁

𝑖=1 ) −  𝐺 (∑ 𝑥𝑖
𝑘𝑁

𝑖=1 ) ]

 ∑ 𝑥𝑖
�̃�𝑁

𝑖=1  − ∑ 𝑥𝑖
𝑘𝑁

𝑖=1  
                          (36) 

 

𝐷𝑖
𝑅 =  𝑥𝑖

�̃� ∙ [
 𝐺(∑ 𝑥𝑖

�̃�𝑁
𝑖=1 )

∑ 𝑥𝑖
�̃�𝑁

𝑖=1

 ] −  𝑥𝑖
𝑘 ∙ 𝑝𝑖

𝑘                                            (37) 

 

In the rest of this section, we present five case studies. The first observes the 
performance of C-RTP under various values of γ and energy generation cost models (Eq. (10)) 
in order to justify the importance of the design of a pricing scheme to motivate behavioural 
changes to the end users. The second studies how C-RTP reacts under various levels of user’s 
flexibility in order to prove that the proposed system is not data-dependent. The third 
evaluates the performance of C-RTP under different assumptions on the number |C| of VECs 
and different peer pressure levels (Eq. (34)) in order to demonstrate their impact in 
promoting behavioral change towards energy efficiency. The fourth compares C-RTP with 
ECFA to C-RTP without ECFA in order to justify the necessity of the interaction of these two 
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components. Finally, the fifth compares an ECFA that takes into account multiple criteria, 
namely the user’s flexibility and the user’s social connections, with two ECFAs that take into 
account only one of them in order to justify our decision to design VECs with multiple 
criteria. 
 

3.5.1. Study for varying generation cost of energy in the wholesale electricity market 

Figure 22 depicts the ratio between the consumed energy cost G under C-RTP and 
also under RTP as a function of γ, for three different choices of the energy generation cost 
parameter, c =0.01, 0.02 and 0.03. The total percentage of energy cost reduction for γ=1 
varies from 8% for low generation cost of energy (c=0.01) to 24% for high generation cost of 
energy (c=0.03) for a given number |C|=16 of VECs. It is apparent from this figure that in all 
scenarios, γ parameter highly affects the system’s energy cost G. It should be noted that 
large values of γ (e.g., γ>1) reduce AUW and thus ESPs using C-RTP have to select a value of γ 
that gives an attractive trade-off between G and AUW. 

 
Figure 22: Ratio between G under C-RTP/ECFA and G under RTP, as a function of γ for various 

energy generation cost parameters c. 

 
Figure 23 depicts the ratio between AUW under C-RTP and AUW under RTP again as a 

function of γ. The scenarios that depicts are the same with Figure 22 (c takes values 0.01, 
0.02 and 0.03). As it can be observed, the AUW under C-RTP is also higher than AUW in RTP 
and this increase ranges from 2% to 5%. Low values of γ favor inflexible users, while high 
values favor flexible ones. In the zone of γ around 0.6 to 0.8, there is an attractive trade-off 
between the welfare of both flexible and inflexible users. On the other hand, the value of γ 
that maximizes AUW depends on parameter c, the ECCs of the consumers and their 
flexibility levels. Thus, it is infeasible to calculate it analytically and ESPs have to adjust γ 
empirically through software tools for business analytics like these that SOCIALENERGY 
project proposes. 
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Figure 23: Ratio between AUW with C-RTP/ECFA and AUW with RTP, as a function of γ 

 

 
Figure 24: CDF of BR in RTP and C-RTP for different energy generation costs 

 

In Figure 24, the Cumulative Distribution Function (CDF) of the 𝐵𝑅 under RTP and 
under the proposed C-RTP/ECFA is presented for various choices of the energy generation 
cost parameters c. As observed in the figure above, C-RTP is capable to fairly distribute the 
financial benefits that are caused by the behavioral changes taking place to the VECs that 
perform these behavioral changes. On the contrary, RTP is a volume-aware pricing, which 
does not incentivize behavioral changes. In particular, there is high variance of BR among the 
participating users. For example, there are some users (i.e. highly flexible users) that are 
rewarded less than 50% of their contribution to the system’s energy savings, while some 
others (i.e. low flexibility users) get much more rewarded than what their contribution is 
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worth. In contrast, the yellow line obtained for C-RTP shows that all users get reimbursed 
exactly based on each one’s contribution to the system’s energy cost reduction. 

 

3.5.2. Study for varying levels of users’ flexibility 

Figure 25 presents the ratio between the consumed energy cost G with C-RTP/ECFA 
and with RTP as a function of γ for various average level of user flexibility [parameter ω in 
Eq. (25)]. Three different scenarios were executed based on user’s flexibility ω, which are 
noted as ‘LOW’, ‘MEDIUM’ and ‘HIGH’. In these scenarios, the elasticity parameter ω of each 
user is chosen randomly in the interval [9,17] for ‘LOW’ flexible users, in the interval [4,10] 
for ‘MEDIUM’ flexible, and in the interval [0.5,7] for ‘HIGH’ flexible users. As we observe, 
significant cost reductions are achieved starting with ~11% for inflexible users and reaching 
up to 35% for flexible users without sacrificing at all the user’s welfare. 

 
Figure 25: Ratio between energy generation cost G with C-RTP/ECFA and G with RTP as a function 

of γ, for different user flexibility levels 

 

Figure 26 depicts the ratio between aggregated users’ welfare AUW with C-RTP/ECFA 
and AUW with RTP, again as a function of γ for the same three scenarios (LOW, MEDIUM, 
HIGH). C-RTP/ECFA achieves better results in all scenarios, which range from 3% (LOW) to 
6% (HIGH). In the latter case, the increase of AUW with C-RTP is higher than that with RTP 
because higher flexibility allows C-RTP more options to use this trade-off more efficiently. 

 
Figure 27 depicts the Cumulative Distribution Function (CDF) of 𝐵𝑅 with RTP and with 

C-RTP/ECFA, for different levels of the users’ flexibility. We see that C-RTP is able to fairly 
distribute the financial benefits among all the users. Moreover, the level of unfairness in RTP 
increases when users have higher flexibility levels (cf. blue line). In these cases, RTP fails to 
reward flexible users and thus we observe even higher variance in BR. 
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Figure 26: Ratio between AUW with C-RTP/ECFA and AUW with RTP as a function of γ, for multiple 

user flexibility levels 

 

 
Figure 27: CDF of BR in RTP and C-RTP/ECFA for various user flexibility levels 

 
 

3.5.3. Study for varying average size of VECs and peer pressure factor 

Figure 28 depicts the ratio between the generation cost G with C-RTP/ECFA and G 
with RTP as a function of maximum peer pressure effect [parameter max_pp in Eq. (34)] for 
multiple numbers of VECs (or else multiple average VEC size). Additionally, the figure 
presents the ratio between G under C-RTP/ECFA and G under RTP as a function of max_pp 
for multiple numbers of VECs. In this case, three case scenarios were validated: 64 users 
were divided into 16 VECs for the first scenario, into 24 VECs for the second scenario, and 
finally into 32 VECs. As max_pp increases, the total cost reduction ranges from 15% to 20% 
depending on the number of VECs. In addition, as expected, as max_pp increases AUW also 
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increases (around 2%), which means that the exploitation of the peer pressure effect 
improves both KPIs.  

 
Figure 28 : Ratio between energy generation cost G with C-RTP/ECFA and G with RTP as a function 

of maximum peer pressure effect for multiple VEC formations 

 
Figure 29: Ratio between AUW under C-RTP/ECFA and AUW under RTP, as a function of maximum 

peer pressure effect for different sizes |C| of the VEC formations 

 
 

3.5.4. Outperformance of ECFA and spectral clustering technique 

In Figure 30, we present the ratio between the energy cost G with C-RTP in case that 
VECs are generated through the use of ECFA and the energy cost G with C-RTP in case that 
VECs are generated randomly; this ratio is depicted as a function of the flexibility level of the 
participating users. Results indicate a significant reduction in G, between 5% for users with 
low flexibility and up to 35% for users with high flexibility, through the use of ECFA in C-RTP. 
This is rational because the proposed C-RTP/ECFA intelligently groups the users in the most 
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appropriate VECs compared to the case that VECs are randomly created. In Figure 31, we 
depict the ratio between the AUW under C-RTP in case that VECs are generated through the 
use of ECFA and the AUW under C-RTP in case that VECs are generated randomly this ratio is 
again who as a function of the flexibility level of the participating users. According to this 
figure, there is a considerable increase in AUW that starts from 3% in case of low flexibility 
and |C|=8 and reaches 15% in case of high flexibility and |C|=16. These two figures prove 
the importance of the combination of C-RTP with ECFA towards an efficient design of 
community energy programs. 

  

 
Figure 30: Ratio G (C-RTP/ECFA)/ G (C-RTP/random VECs) as a function of user’s flexibility  

 
Figure 31: Ratio AUW (C-RTP with ECFA)/AUW (C-RTP with random VECs) as a function of users’ 

flexibility 
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3.5.5. Study of the multi-parametric objective function for VECs’ creation 

Table 13 presents the ratio between G under C-RTP/ECFA and G under RTP, while 
Table 14 presents the ratio between AUW under C-RTP/ECFA and AUW under RTP, for 
various values of the weighting parameter 𝑤1 used in Eq. (32). In column 2 (or 4) of these 
tables, scenarios in which ECFA takes into account only flexibility levels (or only social 
connections, respectively) for the formation of VECs are presented. On the other hand, 
column 3 presents a multi-criteria scenario, where both flexibility in energy consumption 
and social connections were equally taken into account through the use of ECFA. As we 
observe from these tables, for each scenario (regardless the flexibility level of consumers), 
the use of multiple criteria provides the maximum behavioral change (minimum cost), while 
at the same time AUW is increased. 

 

Table 13: The ratio between G in C-RTP and G in RTP under various values of w1 in ECFA (trade-off 
between flexibility and social factor) 

G(C-
RTP)/G(RTP) 

flexibility only (𝑤1 
=0) 

 social & flexibility 
factors (𝑤1 =0.5) 

social factor only (𝑤1 
=1) 

low flex users 0,882357083 0,86590362 0,917851501 

medium flex 
users 0,786386355 0,766113567 0,815745019 

high flex users 0,690906852 0,657595769 0,766077134 

 

Table 14: The ratio between AUW in C-RTP and AUW in RTP under various values of w1 (trade-off 
between flexibility and social factor) 

 
Note: More technical details and performance evaluation results about the family of C-RTP 
energy programs is provided in several journal and international conference publications 
written by ICCS partner, such as [40] [41] [42] [58] [59] [60]. 
 

3.6. Dynamic adaptation of energy communities, profiling, recommendation 
engines and their commercial applicability in SOCIALENERGY’s business 

 The following figure illustrates the process of VECs’ dynamic adaptation and its close 
inter-relation with the innovative services offered by SOCIALENERGY. This process includes 4 
main steps and the technical details are analyzed in chapter 5 of the current report. Initially, 
the business objective should be defined by the SOCIALENERGY administrator user (e.g. the 
CEO or business analyst of an electric utility company/ESP). Then, all energy consumers that 
meet the specific business criteria are selected and subsequently several virtual energy 
communities (VECs) are created. For example, one VEC could be comprised by all energy 
consumers, who have the same EP or belong to the same VEC or have similar flexibility 
levels, etc. During the dynamic VEC adaptation process, significant changes in the users’ 

AUW(C-
RTP)/AUW(RTP) 

flexibility factor 
only(w1=0) 

social & flexibility 
factors (𝑤1 =0.5) 

social factor only (w1=1) 

low flex users 1,009411053 1,037985595 1,012341827 

medium flex users 1,030316886 1,060829799 1,036837756 

high flex users 1,022028129 1,040631129 0,941376169 
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profiling information may be realized and subsequently the VECs’ structure should be 
adapted. Finally, the final step is to automate the recommendation process by creating 
specific rules for each business objective case and then send the required messages to end 
users (i.e. community members). The end users are then able to see the messages in the 
form of notification in their web interface. 

 
Figure 32: Overview of the reporting/recommendation services offered by SOCIALENERGY S/W 

platform 

 
 More technical details about the SOCIALENERGY reporting/recommendation 
mechanism are provided in chapter 5. The design rationale of the proposed framework 
allows the scale-up to hundreds or thousands of business objectives that an electric utility 
company may have in the future. Within SOCIALENERGY project’s context, the following 6 
cases will be implemented and demonstrated, namely: 

• Match user’s/community’s profile with the most suitable Energy Program 

• Switch to another more beneficial Energy Program 

• Switch to another more beneficial Energy Community 

• Instructions to follow the DR signals 

• Recommendation for new electric appliances and other energy efficiency products 

• Match user’s learning profile with the most suitable learning material from LCMS 
 

3.6.1. Match user’s/community’s profile with the most suitable Energy Program 

 In this business case, the ESP’s objective is to run the scientific algorithms proposed 
in chapters 2 and 3 in order to decide which is the most suitable EP for each end user of its 
commercial portfolio.  
 

3.6.2. Switch to another more beneficial Energy Program 

 Here, the service is to provide the incentives and the required knowledge to the end 
user to switch to another EP that may be more beneficial according to his/her updated 
needs. For example, an energy consumer may switch to a “holiday EP” for just one month 
that the house will be vacant and earn extra discount in his/her electricity bill. 
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3.6.3. Switch to another more beneficial Energy Community 

 This recommendation service is similar with the previous one. The difference is that 
this one refers to the family of C-RTP energy programs, while the previous one refers to the 
family of P-RTP energy programs. 
 

3.6.4. Instructions to follow the DR signals 

 In this business case, the utility company/ESP may engage a specific portion of its 
portfolio in a DR event. During a DR event, the end user is guided via 
reporting/recommendation messages about the exact actions that should take place in order 
to gain more discounts in her electricity bill.  
 

3.6.5. Recommendation for new electric appliances and other energy efficiency products 

 This case refers to the collaboration of the electric utility with other market 
stakeholders, who are related with energy efficiency sector (e.g. electric appliances’ 
vendors/retailers, insulation material companies, building construction/renovation 
companies, etc.).  
 

3.6.6. Match user’s learning profile with the most suitable learning material from LCMS 

 Finally, this case is part of the user engagement and education services offered by 
SOCIALENERGY platform. In particular, there is an Individual Learning Plan (ILP) for each end 
user, which is dynamically monitored. Once an end user reaches a learning milestone, s/he is 
recommended the most suitable learning material to continue. 
 

3.7. Integration in SOCIALENERGY S/W platform and credit distribution 
policies 

C-RTP family of energy programs allocates the demand response gains fairly among 
the users and promotes behavioral change towards energy efficiency. The average energy 
cost savings are about 10-20%, while they even reach 30% under certain scenarios, where 
users are very flexible. Moreover, the proposed Energy Community Formation Algorithm 
(ECFA) can be used by a utility company’s/ESP’s business to automatically form efficient 
VECs that achieve high behavioral change via the use of the proposed SOCIALENERGY S/W 
platform. VECs can be used as input to various business analytics functionalities such as user 
profiling, reporting and recommendation mechanisms towards achieving higher and 
sustainable user engagement in ESP’s products and services. 
 

In SOCIALENERGY context, all the above-mentioned algorithms and performance evaluation 
results regarding the family of C-RTP energy programs have been integrated in the RAT 
subsystem. Therefore, the administrative user (e.g. CEO or business analyst of a utility 
company or ESP) is able to run exhaustive “what-if” scenarios in order to decide the best VEC 
formation and respective pricing policy according to the types of users, its business plan and 
the KPI that it wants to optimize. Via the GUI of RAT subsystem (see more details in section 
5), the admin user is able to easily customize all above-mentioned parameters. The results 
are also illustrated in the core GSRN platform via the deployment of GSRN-RAT API. The 
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individual (energy consumer) user of the SOCIAENERGY platform will also be able to run 
instant simulations in order to realize which P-RTP energy program is the most beneficial for 
him/her (see more details in section 6). 

 

3.7.1. The SOCIALENERGY Point System and how it works 

SOCIALENERGY’s Point System represents the mechanism, which defines when, in 
which way and how many SEP points the user will gain, by using the GSRN platform. 
SOCIALENERGY Points (SEPs) represent the way that a user watches, ranks, and guides 
his/her experience in the whole S/W platform. Every action that a player undertakes within 
the system entails a specific amount of SEPs earned. The proposed SOCIALENERGY Point 
System and respective mechanisms are the most important features in order to provide a 
base for the gamified application development. SEPs are also useful for comparing users. 
Moreover, it gives user the feeling of progress and as s/he tries to win more points, s/he 
visits more often the S/W platform. Levels serve as a marker for players to know where they 
stand in a gaming experience (thus experience points) over time. In the game design and all 
other gamification features of SOCIALENERGY platform, level difficulty is not linear. In other 
words, it does not take 100 SEPs to get to level one, 200 for level two, 300 for level three, 
and so on. Instead, difficulty increases in an exponential form. In our project, the following 
SEP formula will be used: 
 

SEP Formula: SEP = a*Level*(1+Level)  (38) 
 

Constant ‘a’ in eq. (38) represents the ease of achieving an increase in one level up. In 
most games this type of mathematical formulas are determined only after play-testing and 
trying out several options. In our case, we should find balance between SEP points assigned 
to each user’s action and constant ‘a’. In order to find the most fitted value for ‘a’, we 
calculate the total SEP points that the user will gain on his/her first GSRN visit (on boarding) 
in the app. We keep in mind that through on boarding, user should experience one level up.  
 
For example, GSRN Registered user’s first visit can be calculated as follows: 
 

Welcome 5 

Daily reward 15 

Read GSRN announcement 10 

Read GSRN tips and energy curves 4 

Engage with GSRN EP or DR or 
Efficiency targets 

5 

Play the SOCIALENERGY Game or 
purchase Marketplace devices 

4 

Engage with LCMS courses 8 

Total: 51 

 
These 51 points must be more than 1 level. Thus, we set a=15 and according to eq. (38), we 
have the curve shown in the figure below: 
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Figure 33: Indicative structure of SOCIALENERGY’s Point System for an indicative value of a=15 

 
Alternatively, the respective matching of the GSRN levels with the SEPs is provided below: 
 

GSRN Level SEPs 

Level 1 0-29 

Level 2 30-89 

Level 3 90-179 

Level 4 180-299 

Level 5 300-449 

Level 6 450-629 

… … 

 
Subsequently, the various GSRN levels are matched with the various user descriptions as 
shown below:  
 

Description Levels 

Novice Levels 1-3 

Beginner Levels 4-9 

Player Levels 10-18 

Challenger Levels 19-30 

Experienced Levels 31-45 

Energy geek Levels 46-63 

Master Levels 64-84 

Guru Levels 85-108 

 
In the figure below, an indicative hierarchical structure is depicted for the matching 

of user characterizations with the various levels: 
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Figure 34: Structure and description of levels within SOCIALENERGY S/W platform 

 
 

 
Figure 35: Indicative structure of SOCIALENERGY’s levels for an indicative value of a=15 

 
 

3.7.2. SOCIALENERGY Coin System 

Based on our literature review and on similar gamification applications, we 
recommend the following currency equivalent between virtual currency (i.e. SOCIALENERGY 
Coin (SEcoin)) and Euro currency. 
 

SEcoins  / Euro = 1 / 3  (39) 
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This means that each Euro is equal to 3 SEcoins. The redemption mechanism should be easy. 
The detailed mechanism can be described as follows: 

a. User gets into the marketplace inventory. The prizes/offers that the user can 

redeem are marked differently than the ones s/he cannot redeem. 

b. The option of further investigating such prize is available to the user, by clicking in 

the prize/offer description. 

c. The user can then select the option Redeem Prize.  

d. The user can either select the prize for himself or for a gift. 

e. If the user selects the prize for himself/herself, then a message indicating the 

shipping address that we have in the database appears. The user can also add 

another shipping address if needed.  

f. If the user continues with the redemption, then a summary of the prize and the 

address is shown with a confirm button. Upon confirming, an email is sent to the 

user and to the supplier with the details and the expected delivery and the 

process, which, for each prize, has been determined with the supplier. 

g. If the user introduces a new address, a message with a summary of the prize and 

the new address is shown and (f) step is repeated after confirmation. 

If the user selects the prize as a gift, a message with space to insert the name and the new 
address is shown and after inserting it, step (f) is followed again. 
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4. Green Social Response Network (GSRN) 
platform 
GSRN is considered the central SOCIALENERGY dashboard and system that users interact 

with (login, logout, etc.). The user can be easily navigated into the GAME, LCMS and RAT 
subsystems via the GSRN dashboard (i.e. front-end system). GSRN interacts with all other 
SOCIALENERGY subsystems and provides all the corresponding results via user-friendly GUIs. 
In the following subsections, indicative screenshots are provided from the 1st version of 
GSRN (mainly using mock-up datasets) for each individual S/W module. 
 

4.1. Meter Data Management System functionalities 

“My energy profile” module provides real consumers’ energy consumption data. The 
user can select the meter installed and then s/he can visualize with nice graphs his/her 
Energy Consumption Curves (ECCs) for various time granularities and periods. This module 
gives users the ability to monitor their energy consumption, and learn about environment 
and energy efficient practices affecting their daily energy usage. 

 
Figure 36: Indicative screenshot from “My energy profile” tab 

 

4.2. Core GSRN S/W functionalities 

There are some core GSRN S/W functionalities, which support the administrative user 
towards managing and customizing the whole S/W platform. For example, GSRN 
administrator can create notifications (mostly in the form of tips) and post them to specific 
user groups. Groups are generated via EC creation algorithms in RAT subsystem and tips are 
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trigged upon date / time definition. The notifications are visualized to the end user and can 
represent DR events, EP suggestions, learning material suggestions, or even offers from the 
virtual marketplace. As shown in the figure below, notification tips displayed on the header 
bar of GSRN. 

 

Figure 37: Indicative screenshot for notifications on GSRN platform 
 

Furthermore, the administrative user can add new users to GSRN. Upon user 
creation, GSRN communicates to other sub-modules (RAT / LCMS) about new user 
registration, by posting a new token. Hence, all GSRN modules are synchronised for the new 
user creation (see more technical details in section 6 about the OAuth2.0 global 
authentication procedure). End users can edit and manage their account through GSRN 
Add/Edit user as shown in the figure below. 
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Figure 38: Edit / Add end users on GSRN 

 
GSRN also provides the ability to the end user to update – view his/her profile data. 

 
Figure 39: Edit users profile on GSRN 
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Figure 40: GSRN Dashboard 

 
 

GSRN Dashboard module allows admin users to drag ‘n’ drop modules latest news, 
for a quick update upon login. The user has full visibility on all GSRN modules and s/he can 
select or click the ones that s/he is interested in the most.  
 

Moreover, upon initial successful user’s registration, a questionnaire is being 
displayed to user, to complete it electronically. Inputs from the questionnaire define the 
initial competence level and the results are being communicated to the LCMS, RAT and 
GAME subsystems. Once this questionnaire is being successful submitted, it is not being 
displayed again in the future. 
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Figure 41: Snapshot of GSRN Questionnaire 

 

 

4.2.1. E-learning/training S/W module 

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 42: Indicative screenshot from “LCMS profile” tab 

 
GSRN’s E-learning/LCMS visualization module is responsible for the integration and 

visualization of all educational material and relevant interactions coming from the GSRN-
LCMS API. The training module visualizes all on-line courses taken from the user, the grades, 
the difficulty and the relevant connections with the actual subjects (efficiency, recycling, 
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etc.). The module is connected with the individual User Profile so that users will be informed 
of/recommended for all available courses and related educational actions. Moreover, users 
can visualize actions they did in LCMS subsystem, courses taken and grades/performance. 
They can overview competencies acquired or list badges - courses they did in the past. GSRN 
keeps history of related actions that users do into the LCMS. In the figure below, an 
indicative snapshot of “LCMS profile” tab is depicted. 
 

4.2.2. Rewarding mechanism S/W module 

  SOCIALENERGY’s Point System represents the mechanism, which defines when, in 
which way and how many SEP points (i.e. SOCIALENERGY Points) the user will gain, using the 
GSRN platform. SEPs represent the ways that a user watches, ranks, and guides his/her 
SOCIALENERGY experience. Everything a player does within the system will earn SEP. SEP 
never maxes out. They are the most needed and basic feature to add in order to provide a 
base for a gamified application development. The rewarding mechanism is a backend 
module that calculates the points and the rewards, based on the description of subsection 
3.7 above. 
 

4.2.3. Data analytics S/W module 

GSRN’s Data Analytics module will visualize all GSRN-RAT outputs and will provide a 
visualized KPIs dashboard to the users to check their overall performance. Most important 
results from dynamic pricing and EC creation/dynamic adaptation algorithms are visualized 
to the end user. Via the RAT functionalities, the “data analytics” module can run multiple 
scenarios based on a variety of parameters and algorithms; users can change values using a 
web form, providing different input parameters for the various algorithms’ execution. The 
algorithms’ results are being drawn automatically into graphs for a better user experience. 

 
Figure 43: Data Analytics dashboard 
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Figure 44: Indicative screenshot from data analytics dashboard graphs (retrieved from RAT via 

GSRN-RAT API) 

 

4.2.4. Gaming and Social Profile S/W module 

GSRN’s Gaming profile module connects directly to the GAME-API and gets all 
relevant details from the game, regarding each specific user. The end user gets badges, 
leader board, performance, stages, points and all available GAME-API inputs. The Game 
profile will inform the user how s/he is performing in the game and how his/her 
performance is compared with others. GSRN’s Social module is also working at the backend 
and will be used to get user info from social networks, as the user logs in the system. 
“Social” module will be combined with all other modules to provide personalization and 
further data analytics.  
 

As shown in the figure below, GSRN gives the ability to the end user to keep track of 
his performance in the game. S/he can preview scores, level game that s/he finished, time 
period played, a variety of information’s, aiming to help and train him/her to have a more 
energy-efficient behavior. 
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Figure 45: Indicative screenshot from GSRN’s “Game Profile” tab 

 

4.3. Virtual Marketplace functionalities 

 

 
 

Figure 46: GSRN Marketplace with various Class A++ devices and offers for the users 
 

GSRN’s “My Marketplace” module is responsible for the electric appliances’ database 
that will be uploaded onto the system, through the Marketplace CMS sub-module and will 
be available to the users through the rewarding scheme (redeem prizes). Various electric 
appliances will have details such as kWh, Class, C02 emissions, price, discounted price, etc., 
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so that the user will be able to choose and proceed with an online payment gateway. 
Various appliances will be pushed to the User Profile, based on personalization and RAT-API 
or LCMS-API or GAME-API in order to map user performance with rewards. In the figure 
below, an indicative screenshot of GSRN’s virtual marketplace tab is depicted. 
 
The redemption mechanism should be easy. The following describes the mechanism in a 

sententious manner: 

a. User gets into the marketplace inventory. The prizes/offers that the user can 

redeem are marked differently that the ones s/he cannot. 

b. The option of further investigating such prize is available to the user, by clicking in 

the prize/offer description. 

c. The user can then select the option Redeem Prize.  

d. The user can either select the prize for himself/herself or for a gift. 

e. If the user selects the prize for himself/herself, then a message indicating the 

shipping address that we have in the database appears. The user can also add 

another shipping address if needed.  

f. If the user continues with the redemption, then a summary of the prize and the 

address is shown with a confirm button. Upon confirming, an email is sent to the 

user and to the supplier with the details and the expected delivery and the 

process which (for each prize/discount), has been determined with the supplier. 

g. If the user introduces a new address, a message with a summary of the prize and 

the new address is shown and step (f) is repeated after confirmation. 

If the user selects the prize as a gift a message with space to insert the name and the new 
address is shown and after inserting it, step (f) is followed again. 
  

4.4. Next S/W implementation steps 

During the next few months (M16-M19), the focus will be on the S/W integration 
activities in order for a 1st stable SOCIALENERGY S/W platform to be released and 
communicated to the potential customer segment and 3rd party stakeholders (cf. milestone 
5 and D5.2 to be delivered in M18). At the same time, the core GSRN functionalities will be 
enhanced towards releasing the final version of SOCIALENERGY functionalities (cf. milestone 
6 and D3.2 to be delivered in M24). 
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5. Research Algorithms’ Toolkit – RAT 

5.1. Introduction 

In a nutshell, the RAT’s functionalities are provided like data analytics as a service to 
the other two main subsystems of SOCIALENERGY, namely the core GSRN platform and the 
GAME. Especially for the GAME, RAT provides the mathematical equations that derive the 
game’s structure and operation. Some main functionalities that RAT offers to its users are 
the following: 

• Run research algorithms and compare them with state-of-the-art (mainly applicable 
to the system administrator user and potentially researchers that will use RAT for 
their experimentations). 

• Run simulations to identify/define various business strategies from the 
utility’s/ESCO’s perspective. 

• Provide data analytics services to utilities/ESCOs such as reporting, 
recommendations, profiling, virtual energy communities’ management, dynamic 
pricing and calculation of various key performance indicator’s related with the online 
execution of various energy programs. 

• Provide sophisticated mathematical modelling to support the operation of serious 
games related with energy efficiency. 

 

5.2. RAT Database 

The RAT database stores all the data that is essential input for the operation of the 
SOCIALENERGY research algorithms. These datasets will include: i) historical data related to 
the energy consumption/flexibility/performance of each individual consumer and virtual 
energy communities, ii) behavioural data taken from the core GSRN platform, the game 
application and LCMS, iii) pricing data from the various markets and research algorithms’ 
results, iv) various results (outputs) from the algorithms’ operation, etc.  
 

The database schema that is used in the first version of the RAT subsystem is depicted in 
the figure below. In particular, we have the following database tables, and corresponding 
columns: 

1. building_types: This table contains the different types of premises, e.g. residential, 
commercial, public buildings, etc.  

2. cl_scenarios: This table contains the execution scenarios for the clustering module. 
3. clusterings: A clustering is a collection of communities. Each consumer can belong to 

only one community in each clustering. 
4. communities: It is a collection of consumers, treated as one entity by the utility 

company for billing purposes. 
5. consumer_categories: Each consumer category represents a different dataset of 

consumers. 
6. consumers: A consumer is a single metering entity, e.g. an apartment, office, etc.  
7. data_points: A data point is measured amount of energy consumption, and is stored 

in relation to a consumer, a timestamp, and an interval. 
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8. ecc_types: These are the types of consumpiton profiles, like “working hours”, 
“nights”, “weekends”. 

9. energy_programs: The different charging policies, e.g. “Real-time pricing”, 
“Personalized real-time- pricing”, “Time-of-use” etc. 

10. flexibilities: The different flexibility models that represent different behaviors related 
to demand response. 

11. intervals: The metering intervals, e.g. “Daily”, “Hourly”, “15-minute”. 
12. results: This table contains the results of the scenarios’ execution. 
13. roles: This table contains the different role types. 
14. scenarios: Each scenario is an execution of a research algorithm. 
15. users: The users in the system. 

 

 
Figure 47: Overview of RAT Database structure and schema 

 
The technical implementation of the database is in PostgreSQL, and is managed 

through Active Record migrations. 
 

5.3. Data Acquisition Module (DAM) 

The Data Acquisition Module (DAM) is responsible for obtaining data from external 
(to the RAT) sources. The data acquisition is performed either periodically, or on-demand, as 
required by the algorithms of the RAT. Individual RESTful APIs are implemented for 
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interacting with the SOCIALENERGY subsystems, namely the core GSRN S/W platform, the 
SOCIALENERGY game and the Meter Data Management System (MDMS). 
 

At the moment, historical datasets from real users and respective meters are used for 
the RAT algorithm’s validation. These datasets are of 15-minute time granularity and refer to 
various types of energy consumers (approximately 400 smart meters from 400 real users are 
currently utilized). As the S/W integration work progresses, the next step is for the RAT 
subsystem to acquire real-time data from real SOCIALENERGY users’ activity from all other 
SOCIALENERGY subsystems.  
 

5.4. Profiling and Searching Module (PSM) including data visualization 

Via the Profiling and Searching Module (PSM), the user of RAT is able to request any 
type of information and then retrieve and visualize it in the RAT’s web interface.  
 

 
Figure 48: Indicative screenshot for visualization of each user’s ECC and profile data 

 
 
Detailed demonstration of related RAT subsystem’s functionalities can be found in 
SOCIALENERGY project’s youtube channel and more specifically in the web links below:  

• https://www.youtube.com/watch?v=QAeoyLDRJNI&t=1s 

• https://www.youtube.com/watch?v=-1elRHEpyk8&t=18s  
 

5.5. User Admin Dashboard (UAD) 

The User Admin Dashboard (UAD) is the interface that the system administrators will 
use for administering the operation of RAT. A graphical user interface (GUI) is implemented, 
that allows for setting up the details of each consumer, as well as the parameters that allow 
for the configuration of the various algorithms that will be implemented in the RAT. An 
indicative screenshot of the UAD is depicted below: 

https://www.youtube.com/watch?v=QAeoyLDRJNI&t=1s
https://www.youtube.com/watch?v=-1elRHEpyk8&t=18s
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Figure 49: Indicative figure of the User Admin Dashboard 

 

5.6. Configuration Panel (CP) 

   

 
Figure 50: Indicative performance evaluation results from the execution of 3 different Energy 

Programs 

 
 Another GUI is implemented for the users of the RAT to configure their participation 
and navigate through all the RAT’s functionalities. Configuration Panel (CP) incorporates all 
data visualization capabilities that the users may have on the RAT. It should be noted that 
this CP may be used by SOCIALENERGY admin user, who will be able to enjoy the 
SOCIALENERGY system’s intelligence and visualize performance evaluation results from the 
execution of various scientific algorithms. In the figure below, three energy programs (i.e. P-
RTP, classic RTP with DR, and RTP with no DR) are compared for a specific set of 4 
consumers. The results show that P-RTP outperforms its competitors in terms of less energy 
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cost and greater aggregated users’ welfare (AUW). More details about the performance 
evaluation results are provided in chapters 2 and 3. 

5.7. Research Algorithms Module (RAM) 

The RAM consists of three basic sets of algorithms that are gradually being integrated, 
namely the: a) dynamic pricing algorithms (or else Energy Programs), b) EC creation 
algorithms (or else profiling algorithms), and c) EC adaptation algorithms (or else 
recommendation algorithms). 
 

5.7.1. Dynamic pricing algorithms or Energy Programs (EPs) 

In the “Energy Programs” of RAT subsystem, the administrative user can visualize all 
simulation scenarios that have already run in the platform. In Figure 51, all parameters for 
each scenario are presented. The admin user can ‘show’, ‘edit’ or ‘destroy’ a scenario. 
 

 
Figure 51: Indicative screenshot of the “Energy Programs” tab in RAT subsystem 

 
There are 4 steps to customize a specific scenario. As shown in the figure below, in 

step 1, the admin user can select all consumers that participate in the simulation from a list. 
The ‘starttime’, ‘endtime’, ‘interval’ and ‘ECC type’ can also be selected.  
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Figure 52: Example for customizing a scenario for comparing Energy Programs (step 1) 

 
In a nutshell, the 4 steps of customizing/editing a specific simulation scenario are: 

• Step 1: Defining the aggregated ECC of the simulation scenario 

• Step 2: Defining the energy cost model  

• Step 3: Defining the user model (i.e. flexibility parameters) 

• Step 4: Defining the EP parameters  
 
The final step is to push the “Run algorithm” button and visualize the results as shown in 
Figure 50. 
 

5.7.2. Energy Community creation algorithms 

 This module incorporates various algorithms for the creation of ECs based on 
multiple parameters, meaning that the clustering of consumers is not only made based on 
their energy consumption curves (ECC)/profiles but also based on: a) their connections in 
social media, b) their personal habits, character and demographic data, c) their behavior 
regarding demand response actions (retrieved from GSRN), d) their will for 
participation/engagement in innovative energy programs and services offered by 
SOCIALENERGY, e) their learning curve, competences and skills regarding good practices in 
energy efficiency sector (taken from LCMS and GAME), etc. Via this multi-parametric 
clustering approach, the ECs that are created can achieve better results in terms of energy 
efficiency/savings, monetary profits and long-term engagement in good energy efficiency 
practices. This is achieved via the inherent social-based or else “peer pressure” that takes 
place among the members of each EC. Within the SOCIALENERGY context, the ESCO/utility 
user will be able to run various simulations to understand the social dynamics and analyse 
the behaviour of his/her customer portfolio. An EC leader user will be able to understand 
whether it is beneficial to add/remove more members to the EC that s/he is leading and 
realize indicative metrics about which EC members are over- or under-performing. 
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 In Figure 53, an indicative RAT GUI is shown illustrating the way that an 
administrative/EC leader user can manually create an EC. In Figure 54, it is shown how the 
admin user is able to choose among various scientific algorithms in order to automatically 
create ECs. 
 

 
Figure 53: Select users to create an Energy Community in a manual way 

 

 
Figure 54: Choose among various algorithms to automatically create an Energy Community (EC) 

 
 Figure 55 depicts an indicative list of results after the run of many EC creation 
algorithms. Once the admin/EC leader user clicks on the “show” button of an EC, then all ECs 
or else “clusterings” can be visualized as shown in Figure 56 for a spectral clustering 
algorithm. Finally, in Figure 57, similar results can be visualized after the run of a genetic 
algorithm. In particular, four ECs have been created (cf. genetic 0, genetic 1, genetic 2 and 
genetic 3 graphs). For each EC, the aggregated energy consumption curve (ECC) is illustrated 
with the red font and individual ECCs of the EC members are shown in blue fonts. More 
technical details are available in several research papers written by ICCS team and can be 
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found in the SOCIALENERGY project’s website http://socialenergy-
project.eu/index.php/downloads/publications.  
 

 
Figure 55: List of results after the run of various EC creation algorithms 

 

 
Figure 56: Indicative results after the run of a specific parameterized spectral clustering algorithm 

 

http://socialenergy-project.eu/index.php/downloads/publications
http://socialenergy-project.eu/index.php/downloads/publications
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Figure 57: Indicative results after the run of a specific parameterized genetic algorithm 

 

5.7.3. Energy Community adaptation algorithms 

In this module, the initial “clusterings” or else ECs, which have been created in the EC 
creation module, can change in case a pre-defined threshold is being surpassed/violated. In 
particular, a multi-dimensional space is created in which all consumers are depicted via a 
point that has multiple coordinates. In this graph, all “distances” between all possible 
combinations of points are measured and thus based on a constraint that is defined by the 
administrator (e.g. ESCO/utility/EC leader user), the “clusterings” are created. As the time 
goes by, the profiles of the energy consumers are continuously changing, so an EC 
adaptation algorithm should be run in order for the new ECs to be formed. This means that 
maybe some energy consumers may switch to another more beneficial EC or the 
administrator or EC leader may choose to add/remove some members from his/her EC. As a 
result, this sub-module can also be seen as a reporting and recommendation engine, whose 
results can be retrieved by GSRN and become very useful to the SOCIALENERGY’s business 
scenarios. 

 
The following figure presents indicative views of the “Reporting/Recommendation” 

tab from RAT subsystem. The first screenshot shows the list of recommendations that are 
available at the administrator’s/EC leader’s interface. The two depicted recommendations 
refer to a “switch energy program”. In more detail, after the dynamic EC adaptation 
algorithm is executed, a change in the optimal clustering has been detected, and finally two 
new recommendations have been generated. For each recommendation, the admin user is 
able to visualize more specific information as shown in the second part of the figure below:  
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Figure 58: (a) Administrator’s/EC leader’s view of the entire list of recommendations; (b) detailed 

view of a single recommendation 

 
After the administrative/EC leader user reviews the recommendation, and possibly 

edits it, can then send the recommendation, which will create alerts for each affected user 
that will be delivered to their inbox. After the alerts have been sent, the recommendation 
cannot be modified, unless the alerts are deleted. When the user logs in the RAT subsystem, 
a yellow icon will appear in the top-right corner of the screen as shown below, which when 
clicked, opens a popup with the most recent alerts in the inbox. The user can click on the 
inbox alert to open it and view it. A list with all alerts that s/he has received is also available. 
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Figure 59: Indicative views of the recommendations received by the end user 

 

5.8. Next S/W implementation steps 

During the next few months (M16-M19), the focus will be on the S/W integration 
activities in order for a 1st stable SOCIALENERGY S/W platform to be released and 
communicated to the potential customer segment and 3rd party stakeholders (cf. milestone 
5 and D5.2 to be delivered in M18). At the same time, the RAT functionalities will be 
enhanced towards releasing the final version of SOCIALENERGY functionalities (cf. milestone 
6  and D3.2 to be delivered in M24). The main S/W implementation tasks can be summarized 
as follows: 

• Test and validate more advanced algorithms for the family of P-RTP energy 
programs (i.e. more parameters in the system modeling and include storage assets’ 
management) 

• Test and validate and then integrate more advanced algorithms for the family of C-
RTP energy programs (i.e. integrate more real data from the core GSRN platform to 
form more sophisticated communities) 

• Implement 3 main types of dynamic EC adaptation algorithms (i.e. 
recommendations) as explained in section 3.5.5.  

• Integrate more real users and energy data from real-life pilots 
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• Integrate more behavioral data from GSRN/GAME/LCMS subsystems as the result of 
their use by real users during the real-life pilots phase. 
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6. S/W integration activities 
This section provides an overview of the initial S/W integration activities, which are in 

progress. More technical details about the 1st phase of S/W integration activities will be 
delivered in the subsequent D5.2 in M18. 
 

The SOCIALENERGY platform has several S/W components. All components are web-
based; others could be native in the future, such as mobile apps (e.g. GAME). Moreover, 
additional third-party applications can be built around this platform in future. Rather than 
having each S/W component maintain its own user database with usernames and 
passwords, SOCIALENERGY platform utilizes a Single Sign-On (SSO) Authentication 
procedure. Therefore, our approach was to identify an SSO strategy and implementation 
that could support those requirements. 
 

According to Wikipedias’ definition: “A Social login, also known as social sign-in, is a 
form of single sign-on using existing login information from a social networking service such 
as Facebook, Twitter or Google+ to sign into a third party website in lieu of creating a new 
login account specifically for that website. Social login can be also considered as a gateway 
for authentication and authorization and is often implemented using OAuth standard. OAuth 
provides a simpler and more standardized solution that simplifies the sign up process”. 

 
OAuth 2.0 [61] is an open protocol for authentication and authorization. There are three 

main participants in an OAuth transaction, namely: i) the User, ii) the Consumer, and iii) the 
Service Provider. The relationship between participants is the following: The User uses one 
application (called Consumer), which requests access to user’s private resources from 
another application (called Service Provider), and the user wants to grant access to the 
Consumer without giving away the password. From the user’s perspective, the process is 
quite simple – from the Consumer application the user is referred to the Service Provider, 
where after authentication and granting access to the Consumer application on the 
requested user’s resources is forwarded back to the Consumer application. 
 

Within the SOCIALENERGY project, we implemented our own SOCIALENERGY OAuth 
provider in order to meet the privacy requirements for users, who do not want to or cannot 
(due to legal age restrictions) to join the social networks. The SOCIALENERGY OAuth 
provider offers new user registration functionality. Thus, users can authenticate with 
“SOCIALENERGY” credentials and hence do not need social media in order to use the 
SOCIALENERGY infrastructure. The SOCIALENERGY OAuth provider does not only create the 
user locally, but also communicates every account to all other software components within 
SOCIALENERGY S/W platform. 
 

By communicating these users explicitly, the other S/W components will be aware of 
these newly created users, even before they logged in the S/W component itself (usually 
when a user uses an OAuth provider for authentication, the Consumer application creates a 
user profile in its own user database, when the user logs-in for the first time. Therefore, only 
creating a user account in the SOCIALENERGY OAuth provider would not enable other S/W 
components to be aware of the new user till their log-in into it for the first time). 
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6.1. Interaction between MDMS and GSRN/RAT 

This API is responsible for providing all real-time energy consumption data from the real 
SOCIALENERGY users (or else smart meters) to GSRN and RAT. The POST body parameters 
and respective response to retrieve energy consumption data from MDMS is the following: 
POST body parameter 
         { 
     "usernameID ": "integer", 
     "timestampFrom": "integer" 
     "timestampTo": "integer" 
    } 
 
Response: 
user_id, 
package_id, 
user_address :  city, region, zip_code, 
meter_count, 
meter_address :  city,  region,  zip_code, 
meter_type, 
consumption, 
modules :  count, timestamp, name,  mobile/web, 
user_age 
 
Regarding the retrieval of GSRN user’s engagement/real activity data in real-time and upon 
request, the following simple API structure is adopted: 
POST body parameter 
{ 
     "username ": "string", 
     "dateFrom" : "string", 
     "dateTo" : "string" 
} 
Response: 
{ 
   type_of_action, 
   action, 
   os, 
   browser, 
   agent, 
   timestamp, 
   aggregate_data:{ interval, times_of_visit_page,os,browser,agent,timestamp   }     
} 

6.2. Interaction between GSRN and RAT 

The GSRN-RAT API facilitates the data analytics services provided by RAT subsystem 
to GSRN. The ‘POST’ body parameters sent from GSRN to RAT are: 
{ 
     "name ": "string", 
     "consumer_ids": "string", 
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     "starttime": "string" 
     "endtime": "string" 
     "interval_id": "string" 
     "ecc_type_id": "string" 
     "energy_cost_parameter": "string" 
     "profit_margin_parameter": "string" 
     "flexibility_id": "string" 
     "gamma_parameter": "string" 
     "energy_program_ids": "string" 
     } 
 

The RAT response back to GSRN in order for the related graphs to be visualized at the 
user’s side in GSRN is the following (indicatively): 
 
energy cost graph data. 
Metrics: 
RTP (no DR) / timestamp - values 
Real-time pricing / timestamp - values 
Personal Real-time pricing / timestamp - values 
 
user_welfare graph data. 
Metrics: 
RTP (no DR) / timestamp - values 
Real-time pricing / timestamp - values 
Personal Real-time pricing / timestamp - values 
 
retailer_profit graph data. 
Metrics: 
RTP (no DR) / timestamp - values 
Real-time pricing / timestamp - values 
Personal Real-time pricing / timestamp - values 
 
total_welfare graph data. 
Metrics: 
RTP (no DR) / timestamp - values 
Real-time pricing / timestamp - values 
Personal Real-time pricing / timestamp - values 
 
Please note that in the 2nd release of SOCIALENERGY system’s functionalities, more 
algorithms and respective data analytics services will be supported according to the work 
WP3 progress. 
 

6.3. Interaction between GSRN and GAME 

The GAME needs to authorize user to GSRN, before proceeding with the actual gameplay. 
 
POST body parameter – sent from GAME to GSRN 
         { 
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     "username ": "string", 
     "password": "string" 
    } 
 
Response from the GSRN: token is being generated as follows: 
 
POST body parameter – sent from GSRN to GAME 
         { 
     "token": "string" 
    } 
 
The GAME posts back to GSRN all the players’ actions from the actual gameplay and the 
related features/datasets are indicatively described below: 
 
id_job,  
devices: consumption, per_device_time_duration, mode_device, 
device_id,points_per_device 
total_score, 
daily score, 
user_id, 
game_duration, 
timestamp_user_logged_in, 
timestamp_user_logged_out, 
energy_program, 
level_game 
 

6.4. Interaction between GSRN and LCMS 

After registering in GSRN, the user completes a questionnaire that assists the process 
of identifying educational goals and missing competencies. Based on the questionnaire’s 
results, an individual learning plan (ILP) is created in LCMS on behalf of the GSRN covering 
the missing competencies. 

LCMS exposes a user profile to GSRN in a structured type as described below. It 
should be noted that this is the general structure of the LCMS-GSRN API and it may be 
enhanced at the 2nd phase of S/W integration (i.e. M19-M27 period). 

list of (  
        object { 
                user object { 
                        id int   //ID of the user 
                        username string  Optional //the username 
                        firstname string  Optional //the first name(s) of the user 
                        lastname string  Optional //the family name of the user 
                        email string  Optional //an email address 
                        url string   //profile URL 
                        firstaccess int  Optional //first access to the site (0 if never) 
                        lastaccess int  Optional //last access to the site (0 if never) 
                }  
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                competencies list of (  
                        object { 
                                id int  Optional //competence id 
                                name string   //competence name 
                                description string   //competence description 
                                idnumber string   //id number 
                                proficiency int  Default to "0" //proficiency 
                                grade int   //grade type 
                                gradename string   //grade name 
                        }  
                ) 
                badges list of (  
                        object { 
                                id int  Optional //badge id. 
                                name string   //badge name. 
                                description string   //badge description. 
                                url string   //badge URL. 
                                dateissued int   //date issued. 
                        }  
                ) 
                courses list of (  
                        object { 
                                id int   //id of course 
                                name string   //long name of course 
                                description string  Optional //summary 
                                url string   //the course URL. 
                                grademin string  Optional //grade min value 
                                grademax string  Optional //grade max value 
                                gradepass string  Optional //grade pass value 
                                grade string  Optional //grade value 
                                dategraded int  Optional //date issued. 
                                progress double  Optional //progress percentage 
                                timespent string  Optional //dedication time of the user to the course 
                        }  
                ) 
        }  
) 

Figure 60: LCMS user profile and datasets sent to GSRN upon request (general structure) 

 
LCMS supports the OAuth2 authentication strategy chosen as a Single Sign-On 

Authentication (SSO Authentication) mechanism [61]. The OAuth2 authentication plug-in 
enables end users to login in LCMS using their credentials from GSRN. Please note that a 
similar procedure is followed for the authentication among all SOCIALENERGY subsystems. 
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Figure 61: Authentication flow 
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7. Conclusions 
Conclusively, the consortium has now reached Milestone 4, meaning that it has released 

the initial version of SOCIALENERGY functionalities via the delivery of D3.1 (“Initial version of 
GSRN platform functionalities”) and D4.2 (“Initial version of SOCIALENERGY’s virtual world 
functionalities”) in M15. Moreover, via the delivery of D6.2 in M15, the consortium is now 
focusing the work progress on one unique business model and five value propositions (or 
else business cases). As a result, the S/W implementation and integration activities are now 
being focused on the specific set of services according to the respective feedback that the 
consortium has from its customer segment (i.e. electric utility company/ESP).  
 

The afore-mentioned achievements and work progress give pace to the start of core S/W 
integration work, which has already begun. Step-wise, the actual work schedule plan is the 
following: 

• The core S/W integration work will take place in the context of technical Work 
Package 5. Partners will work closely and collaboratively on the APIs for the 
interaction among the various subsystems during the upcoming 3 months. 

• S/W implementation work is continuing by enhancing the existing functionalities and 
integrating even more research algorithms and intelligence in our system. 

• Pilot setup and experimentation plan is under construction in order to start pilot 
testing activities once a stable SOCIALENERGY S/W prototype version is ready for 
DEMO. 

 
The goal until the end of the second reporting period is to demonstrate the first stable 

version of SOCIALENERGY system during the 2nd review meeting in front of potential real 
customers, too in Athens in September 2018.  
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